MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gimf1o Structured version   Visualization version   Unicode version

Theorem gimf1o 17705
Description: An isomorphism of groups is a bijection. (Contributed by Stefan O'Rear, 21-Jan-2015.) (Revised by Mario Carneiro, 6-May-2015.)
Hypotheses
Ref Expression
isgim.b  |-  B  =  ( Base `  R
)
isgim.c  |-  C  =  ( Base `  S
)
Assertion
Ref Expression
gimf1o  |-  ( F  e.  ( R GrpIso  S
)  ->  F : B
-1-1-onto-> C )

Proof of Theorem gimf1o
StepHypRef Expression
1 isgim.b . . 3  |-  B  =  ( Base `  R
)
2 isgim.c . . 3  |-  C  =  ( Base `  S
)
31, 2isgim 17704 . 2  |-  ( F  e.  ( R GrpIso  S
)  <->  ( F  e.  ( R  GrpHom  S )  /\  F : B -1-1-onto-> C
) )
43simprbi 480 1  |-  ( F  e.  ( R GrpIso  S
)  ->  F : B
-1-1-onto-> C )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650   Basecbs 15857    GrpHom cghm 17657   GrpIso cgim 17699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-ghm 17658  df-gim 17701
This theorem is referenced by:  subggim  17708  gicen  17720  gicsubgen  17721  giccyg  18301  abliso  29696  gicabl  37669
  Copyright terms: Public domain W3C validator