MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gicsubgen Structured version   Visualization version   Unicode version

Theorem gicsubgen 17721
Description: A less trivial example of a group invariant: cardinality of the subgroup lattice. (Contributed by Stefan O'Rear, 25-Jan-2015.)
Assertion
Ref Expression
gicsubgen  |-  ( R 
~=g𝑔  S  ->  (SubGrp `  R )  ~~  (SubGrp `  S )
)

Proof of Theorem gicsubgen
Dummy variables  a 
b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brgic 17711 . . 3  |-  ( R 
~=g𝑔  S 
<->  ( R GrpIso  S )  =/=  (/) )
2 n0 3931 . . 3  |-  ( ( R GrpIso  S )  =/=  (/) 
<->  E. a  a  e.  ( R GrpIso  S ) )
31, 2bitri 264 . 2  |-  ( R 
~=g𝑔  S 
<->  E. a  a  e.  ( R GrpIso  S ) )
4 fvexd 6203 . . . 4  |-  ( a  e.  ( R GrpIso  S
)  ->  (SubGrp `  R
)  e.  _V )
5 fvexd 6203 . . . 4  |-  ( a  e.  ( R GrpIso  S
)  ->  (SubGrp `  S
)  e.  _V )
6 vex 3203 . . . . . 6  |-  a  e. 
_V
76imaex 7104 . . . . 5  |-  ( a
" b )  e. 
_V
872a1i 12 . . . 4  |-  ( a  e.  ( R GrpIso  S
)  ->  ( b  e.  (SubGrp `  R )  ->  ( a " b
)  e.  _V )
)
96cnvex 7113 . . . . . 6  |-  `' a  e.  _V
109imaex 7104 . . . . 5  |-  ( `' a " c )  e.  _V
11102a1i 12 . . . 4  |-  ( a  e.  ( R GrpIso  S
)  ->  ( c  e.  (SubGrp `  S )  ->  ( `' a "
c )  e.  _V ) )
12 gimghm 17706 . . . . . . . . 9  |-  ( a  e.  ( R GrpIso  S
)  ->  a  e.  ( R  GrpHom  S ) )
13 ghmima 17681 . . . . . . . . 9  |-  ( ( a  e.  ( R 
GrpHom  S )  /\  b  e.  (SubGrp `  R )
)  ->  ( a " b )  e.  (SubGrp `  S )
)
1412, 13sylan 488 . . . . . . . 8  |-  ( ( a  e.  ( R GrpIso  S )  /\  b  e.  (SubGrp `  R )
)  ->  ( a " b )  e.  (SubGrp `  S )
)
15 eqid 2622 . . . . . . . . . . . 12  |-  ( Base `  R )  =  (
Base `  R )
16 eqid 2622 . . . . . . . . . . . 12  |-  ( Base `  S )  =  (
Base `  S )
1715, 16gimf1o 17705 . . . . . . . . . . 11  |-  ( a  e.  ( R GrpIso  S
)  ->  a :
( Base `  R ) -1-1-onto-> ( Base `  S ) )
18 f1of1 6136 . . . . . . . . . . 11  |-  ( a : ( Base `  R
)
-1-1-onto-> ( Base `  S )  ->  a : ( Base `  R ) -1-1-> ( Base `  S ) )
1917, 18syl 17 . . . . . . . . . 10  |-  ( a  e.  ( R GrpIso  S
)  ->  a :
( Base `  R ) -1-1-> ( Base `  S
) )
2015subgss 17595 . . . . . . . . . 10  |-  ( b  e.  (SubGrp `  R
)  ->  b  C_  ( Base `  R )
)
21 f1imacnv 6153 . . . . . . . . . 10  |-  ( ( a : ( Base `  R ) -1-1-> ( Base `  S )  /\  b  C_  ( Base `  R
) )  ->  ( `' a " (
a " b ) )  =  b )
2219, 20, 21syl2an 494 . . . . . . . . 9  |-  ( ( a  e.  ( R GrpIso  S )  /\  b  e.  (SubGrp `  R )
)  ->  ( `' a " ( a "
b ) )  =  b )
2322eqcomd 2628 . . . . . . . 8  |-  ( ( a  e.  ( R GrpIso  S )  /\  b  e.  (SubGrp `  R )
)  ->  b  =  ( `' a " (
a " b ) ) )
2414, 23jca 554 . . . . . . 7  |-  ( ( a  e.  ( R GrpIso  S )  /\  b  e.  (SubGrp `  R )
)  ->  ( (
a " b )  e.  (SubGrp `  S
)  /\  b  =  ( `' a " (
a " b ) ) ) )
25 eleq1 2689 . . . . . . . 8  |-  ( c  =  ( a "
b )  ->  (
c  e.  (SubGrp `  S )  <->  ( a " b )  e.  (SubGrp `  S )
) )
26 imaeq2 5462 . . . . . . . . 9  |-  ( c  =  ( a "
b )  ->  ( `' a " c
)  =  ( `' a " ( a
" b ) ) )
2726eqeq2d 2632 . . . . . . . 8  |-  ( c  =  ( a "
b )  ->  (
b  =  ( `' a " c )  <-> 
b  =  ( `' a " ( a
" b ) ) ) )
2825, 27anbi12d 747 . . . . . . 7  |-  ( c  =  ( a "
b )  ->  (
( c  e.  (SubGrp `  S )  /\  b  =  ( `' a
" c ) )  <-> 
( ( a "
b )  e.  (SubGrp `  S )  /\  b  =  ( `' a
" ( a "
b ) ) ) ) )
2924, 28syl5ibrcom 237 . . . . . 6  |-  ( ( a  e.  ( R GrpIso  S )  /\  b  e.  (SubGrp `  R )
)  ->  ( c  =  ( a "
b )  ->  (
c  e.  (SubGrp `  S )  /\  b  =  ( `' a
" c ) ) ) )
3029impr 649 . . . . 5  |-  ( ( a  e.  ( R GrpIso  S )  /\  (
b  e.  (SubGrp `  R )  /\  c  =  ( a "
b ) ) )  ->  ( c  e.  (SubGrp `  S )  /\  b  =  ( `' a " c
) ) )
31 ghmpreima 17682 . . . . . . . . 9  |-  ( ( a  e.  ( R 
GrpHom  S )  /\  c  e.  (SubGrp `  S )
)  ->  ( `' a " c )  e.  (SubGrp `  R )
)
3212, 31sylan 488 . . . . . . . 8  |-  ( ( a  e.  ( R GrpIso  S )  /\  c  e.  (SubGrp `  S )
)  ->  ( `' a " c )  e.  (SubGrp `  R )
)
33 f1ofo 6144 . . . . . . . . . . 11  |-  ( a : ( Base `  R
)
-1-1-onto-> ( Base `  S )  ->  a : ( Base `  R ) -onto-> ( Base `  S ) )
3417, 33syl 17 . . . . . . . . . 10  |-  ( a  e.  ( R GrpIso  S
)  ->  a :
( Base `  R ) -onto->
( Base `  S )
)
3516subgss 17595 . . . . . . . . . 10  |-  ( c  e.  (SubGrp `  S
)  ->  c  C_  ( Base `  S )
)
36 foimacnv 6154 . . . . . . . . . 10  |-  ( ( a : ( Base `  R ) -onto-> ( Base `  S )  /\  c  C_  ( Base `  S
) )  ->  (
a " ( `' a " c ) )  =  c )
3734, 35, 36syl2an 494 . . . . . . . . 9  |-  ( ( a  e.  ( R GrpIso  S )  /\  c  e.  (SubGrp `  S )
)  ->  ( a " ( `' a
" c ) )  =  c )
3837eqcomd 2628 . . . . . . . 8  |-  ( ( a  e.  ( R GrpIso  S )  /\  c  e.  (SubGrp `  S )
)  ->  c  =  ( a " ( `' a " c
) ) )
3932, 38jca 554 . . . . . . 7  |-  ( ( a  e.  ( R GrpIso  S )  /\  c  e.  (SubGrp `  S )
)  ->  ( ( `' a " c
)  e.  (SubGrp `  R )  /\  c  =  ( a "
( `' a "
c ) ) ) )
40 eleq1 2689 . . . . . . . 8  |-  ( b  =  ( `' a
" c )  -> 
( b  e.  (SubGrp `  R )  <->  ( `' a " c )  e.  (SubGrp `  R )
) )
41 imaeq2 5462 . . . . . . . . 9  |-  ( b  =  ( `' a
" c )  -> 
( a " b
)  =  ( a
" ( `' a
" c ) ) )
4241eqeq2d 2632 . . . . . . . 8  |-  ( b  =  ( `' a
" c )  -> 
( c  =  ( a " b )  <-> 
c  =  ( a
" ( `' a
" c ) ) ) )
4340, 42anbi12d 747 . . . . . . 7  |-  ( b  =  ( `' a
" c )  -> 
( ( b  e.  (SubGrp `  R )  /\  c  =  (
a " b ) )  <->  ( ( `' a " c )  e.  (SubGrp `  R
)  /\  c  =  ( a " ( `' a " c
) ) ) ) )
4439, 43syl5ibrcom 237 . . . . . 6  |-  ( ( a  e.  ( R GrpIso  S )  /\  c  e.  (SubGrp `  S )
)  ->  ( b  =  ( `' a
" c )  -> 
( b  e.  (SubGrp `  R )  /\  c  =  ( a "
b ) ) ) )
4544impr 649 . . . . 5  |-  ( ( a  e.  ( R GrpIso  S )  /\  (
c  e.  (SubGrp `  S )  /\  b  =  ( `' a
" c ) ) )  ->  ( b  e.  (SubGrp `  R )  /\  c  =  (
a " b ) ) )
4630, 45impbida 877 . . . 4  |-  ( a  e.  ( R GrpIso  S
)  ->  ( (
b  e.  (SubGrp `  R )  /\  c  =  ( a "
b ) )  <->  ( c  e.  (SubGrp `  S )  /\  b  =  ( `' a " c
) ) ) )
474, 5, 8, 11, 46en2d 7991 . . 3  |-  ( a  e.  ( R GrpIso  S
)  ->  (SubGrp `  R
)  ~~  (SubGrp `  S
) )
4847exlimiv 1858 . 2  |-  ( E. a  a  e.  ( R GrpIso  S )  -> 
(SubGrp `  R )  ~~  (SubGrp `  S )
)
493, 48sylbi 207 1  |-  ( R 
~=g𝑔  S  ->  (SubGrp `  R )  ~~  (SubGrp `  S )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   _Vcvv 3200    C_ wss 3574   (/)c0 3915   class class class wbr 4653   `'ccnv 5113   "cima 5117   -1-1->wf1 5885   -onto->wfo 5886   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650    ~~ cen 7952   Basecbs 15857  SubGrpcsubg 17588    GrpHom cghm 17657   GrpIso cgim 17699    ~=g𝑔 cgic 17700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-subg 17591  df-ghm 17658  df-gim 17701  df-gic 17702
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator