| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > abliso | Structured version Visualization version Unicode version | ||
| Description: The image of an Abelian group by a group isomorphism is also Abelian. (Contributed by Thierry Arnoux, 8-Mar-2018.) |
| Ref | Expression |
|---|---|
| abliso |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gimghm 17706 |
. . . 4
| |
| 2 | ghmgrp2 17663 |
. . . 4
| |
| 3 | 1, 2 | syl 17 |
. . 3
|
| 4 | 3 | adantl 482 |
. 2
|
| 5 | grpmnd 17429 |
. . . 4
| |
| 6 | 4, 5 | syl 17 |
. . 3
|
| 7 | simpll 790 |
. . . . . . . 8
| |
| 8 | eqid 2622 |
. . . . . . . . . . . 12
| |
| 9 | eqid 2622 |
. . . . . . . . . . . 12
| |
| 10 | 8, 9 | gimf1o 17705 |
. . . . . . . . . . 11
|
| 11 | f1ocnv 6149 |
. . . . . . . . . . 11
| |
| 12 | f1of 6137 |
. . . . . . . . . . 11
| |
| 13 | 10, 11, 12 | 3syl 18 |
. . . . . . . . . 10
|
| 14 | 13 | ad2antlr 763 |
. . . . . . . . 9
|
| 15 | simprl 794 |
. . . . . . . . 9
| |
| 16 | 14, 15 | ffvelrnd 6360 |
. . . . . . . 8
|
| 17 | simprr 796 |
. . . . . . . . 9
| |
| 18 | 14, 17 | ffvelrnd 6360 |
. . . . . . . 8
|
| 19 | eqid 2622 |
. . . . . . . . 9
| |
| 20 | 8, 19 | ablcom 18210 |
. . . . . . . 8
|
| 21 | 7, 16, 18, 20 | syl3anc 1326 |
. . . . . . 7
|
| 22 | gimcnv 17709 |
. . . . . . . . . 10
| |
| 23 | 22 | ad2antlr 763 |
. . . . . . . . 9
|
| 24 | gimghm 17706 |
. . . . . . . . 9
| |
| 25 | 23, 24 | syl 17 |
. . . . . . . 8
|
| 26 | eqid 2622 |
. . . . . . . . 9
| |
| 27 | 9, 26, 19 | ghmlin 17665 |
. . . . . . . 8
|
| 28 | 25, 15, 17, 27 | syl3anc 1326 |
. . . . . . 7
|
| 29 | 9, 26, 19 | ghmlin 17665 |
. . . . . . . 8
|
| 30 | 25, 17, 15, 29 | syl3anc 1326 |
. . . . . . 7
|
| 31 | 21, 28, 30 | 3eqtr4d 2666 |
. . . . . 6
|
| 32 | 31 | fveq2d 6195 |
. . . . 5
|
| 33 | 10 | ad2antlr 763 |
. . . . . 6
|
| 34 | 3 | ad2antlr 763 |
. . . . . . 7
|
| 35 | 9, 26 | grpcl 17430 |
. . . . . . 7
|
| 36 | 34, 15, 17, 35 | syl3anc 1326 |
. . . . . 6
|
| 37 | f1ocnvfv2 6533 |
. . . . . 6
| |
| 38 | 33, 36, 37 | syl2anc 693 |
. . . . 5
|
| 39 | 9, 26 | grpcl 17430 |
. . . . . . 7
|
| 40 | 34, 17, 15, 39 | syl3anc 1326 |
. . . . . 6
|
| 41 | f1ocnvfv2 6533 |
. . . . . 6
| |
| 42 | 33, 40, 41 | syl2anc 693 |
. . . . 5
|
| 43 | 32, 38, 42 | 3eqtr3d 2664 |
. . . 4
|
| 44 | 43 | ralrimivva 2971 |
. . 3
|
| 45 | 9, 26 | iscmn 18200 |
. . 3
|
| 46 | 6, 44, 45 | sylanbrc 698 |
. 2
|
| 47 | isabl 18197 |
. 2
| |
| 48 | 4, 46, 47 | sylanbrc 698 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-grp 17425 df-ghm 17658 df-gim 17701 df-cmn 18195 df-abl 18196 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |