MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpoidinvlem1 Structured version   Visualization version   Unicode version

Theorem grpoidinvlem1 27358
Description: Lemma for grpoidinv 27362. (Contributed by NM, 10-Oct-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
grpfo.1  |-  X  =  ran  G
Assertion
Ref Expression
grpoidinvlem1  |-  ( ( ( G  e.  GrpOp  /\  ( Y  e.  X  /\  A  e.  X
) )  /\  (
( Y G A )  =  U  /\  ( A G A )  =  A ) )  ->  ( U G A )  =  U )

Proof of Theorem grpoidinvlem1
StepHypRef Expression
1 id 22 . . . . 5  |-  ( ( Y  e.  X  /\  A  e.  X  /\  A  e.  X )  ->  ( Y  e.  X  /\  A  e.  X  /\  A  e.  X
) )
213anidm23 1385 . . . 4  |-  ( ( Y  e.  X  /\  A  e.  X )  ->  ( Y  e.  X  /\  A  e.  X  /\  A  e.  X
) )
3 grpfo.1 . . . . 5  |-  X  =  ran  G
43grpoass 27357 . . . 4  |-  ( ( G  e.  GrpOp  /\  ( Y  e.  X  /\  A  e.  X  /\  A  e.  X )
)  ->  ( ( Y G A ) G A )  =  ( Y G ( A G A ) ) )
52, 4sylan2 491 . . 3  |-  ( ( G  e.  GrpOp  /\  ( Y  e.  X  /\  A  e.  X )
)  ->  ( ( Y G A ) G A )  =  ( Y G ( A G A ) ) )
65adantr 481 . 2  |-  ( ( ( G  e.  GrpOp  /\  ( Y  e.  X  /\  A  e.  X
) )  /\  (
( Y G A )  =  U  /\  ( A G A )  =  A ) )  ->  ( ( Y G A ) G A )  =  ( Y G ( A G A ) ) )
7 oveq1 6657 . . 3  |-  ( ( Y G A )  =  U  ->  (
( Y G A ) G A )  =  ( U G A ) )
87ad2antrl 764 . 2  |-  ( ( ( G  e.  GrpOp  /\  ( Y  e.  X  /\  A  e.  X
) )  /\  (
( Y G A )  =  U  /\  ( A G A )  =  A ) )  ->  ( ( Y G A ) G A )  =  ( U G A ) )
9 oveq2 6658 . . . 4  |-  ( ( A G A )  =  A  ->  ( Y G ( A G A ) )  =  ( Y G A ) )
109ad2antll 765 . . 3  |-  ( ( ( G  e.  GrpOp  /\  ( Y  e.  X  /\  A  e.  X
) )  /\  (
( Y G A )  =  U  /\  ( A G A )  =  A ) )  ->  ( Y G ( A G A ) )  =  ( Y G A ) )
11 simprl 794 . . 3  |-  ( ( ( G  e.  GrpOp  /\  ( Y  e.  X  /\  A  e.  X
) )  /\  (
( Y G A )  =  U  /\  ( A G A )  =  A ) )  ->  ( Y G A )  =  U )
1210, 11eqtrd 2656 . 2  |-  ( ( ( G  e.  GrpOp  /\  ( Y  e.  X  /\  A  e.  X
) )  /\  (
( Y G A )  =  U  /\  ( A G A )  =  A ) )  ->  ( Y G ( A G A ) )  =  U )
136, 8, 123eqtr3d 2664 1  |-  ( ( ( G  e.  GrpOp  /\  ( Y  e.  X  /\  A  e.  X
) )  /\  (
( Y G A )  =  U  /\  ( A G A )  =  A ) )  ->  ( U G A )  =  U )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   ran crn 5115  (class class class)co 6650   GrpOpcgr 27343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fo 5894  df-fv 5896  df-ov 6653  df-grpo 27347
This theorem is referenced by:  grpoidinvlem3  27360
  Copyright terms: Public domain W3C validator