| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpoidinv | Structured version Visualization version Unicode version | ||
| Description: A group has a left and right identity element, and every member has a left and right inverse. (Contributed by NM, 14-Oct-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| grpfo.1 |
|
| Ref | Expression |
|---|---|
| grpoidinv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 473 |
. . . . . . . 8
| |
| 2 | 1 | ralimi 2952 |
. . . . . . 7
|
| 3 | oveq2 6658 |
. . . . . . . . 9
| |
| 4 | id 22 |
. . . . . . . . 9
| |
| 5 | 3, 4 | eqeq12d 2637 |
. . . . . . . 8
|
| 6 | 5 | rspccva 3308 |
. . . . . . 7
|
| 7 | 2, 6 | sylan 488 |
. . . . . 6
|
| 8 | 7 | adantll 750 |
. . . . 5
|
| 9 | 8 | adantll 750 |
. . . 4
|
| 10 | simpl 473 |
. . . . . . 7
| |
| 11 | 10 | anim1i 592 |
. . . . . 6
|
| 12 | id 22 |
. . . . . . . . . 10
| |
| 13 | 12 | adantrr 753 |
. . . . . . . . 9
|
| 14 | 13 | adantr 481 |
. . . . . . . 8
|
| 15 | 2 | adantl 482 |
. . . . . . . . 9
|
| 16 | 15 | ad2antlr 763 |
. . . . . . . 8
|
| 17 | simpr 477 |
. . . . . . . . . . 11
| |
| 18 | 17 | ralimi 2952 |
. . . . . . . . . 10
|
| 19 | 18 | adantl 482 |
. . . . . . . . 9
|
| 20 | 19 | ad2antlr 763 |
. . . . . . . 8
|
| 21 | 14, 16, 20 | jca32 558 |
. . . . . . 7
|
| 22 | grpfo.1 |
. . . . . . . 8
| |
| 23 | biid 251 |
. . . . . . . 8
| |
| 24 | biid 251 |
. . . . . . . 8
| |
| 25 | 22, 23, 24 | grpoidinvlem3 27360 |
. . . . . . 7
|
| 26 | 21, 25 | sylancom 701 |
. . . . . 6
|
| 27 | 22 | grpoidinvlem4 27361 |
. . . . . 6
|
| 28 | 11, 26, 27 | syl2anc 693 |
. . . . 5
|
| 29 | 28, 9 | eqtrd 2656 |
. . . 4
|
| 30 | 9, 29, 26 | jca31 557 |
. . 3
|
| 31 | 30 | ralrimiva 2966 |
. 2
|
| 32 | 22 | grpolidinv 27355 |
. 2
|
| 33 | 31, 32 | reximddv 3018 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fo 5894 df-fv 5896 df-ov 6653 df-grpo 27347 |
| This theorem is referenced by: grpoideu 27363 grpoidval 27367 grpoidinv2 27369 grpomndo 33674 |
| Copyright terms: Public domain | W3C validator |