| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grppropd | Structured version Visualization version Unicode version | ||
| Description: If two structures have the same group components (properties), one is a group iff the other one is. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 2-Oct-2015.) |
| Ref | Expression |
|---|---|
| grppropd.1 |
|
| grppropd.2 |
|
| grppropd.3 |
|
| Ref | Expression |
|---|---|
| grppropd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grppropd.1 |
. . . 4
| |
| 2 | grppropd.2 |
. . . 4
| |
| 3 | grppropd.3 |
. . . 4
| |
| 4 | 1, 2, 3 | mndpropd 17316 |
. . 3
|
| 5 | 1, 2, 3 | grpidpropd 17261 |
. . . . . . . . 9
|
| 6 | 5 | adantr 481 |
. . . . . . . 8
|
| 7 | 3, 6 | eqeq12d 2637 |
. . . . . . 7
|
| 8 | 7 | anass1rs 849 |
. . . . . 6
|
| 9 | 8 | rexbidva 3049 |
. . . . 5
|
| 10 | 9 | ralbidva 2985 |
. . . 4
|
| 11 | 1 | rexeqdv 3145 |
. . . . 5
|
| 12 | 1, 11 | raleqbidv 3152 |
. . . 4
|
| 13 | 2 | rexeqdv 3145 |
. . . . 5
|
| 14 | 2, 13 | raleqbidv 3152 |
. . . 4
|
| 15 | 10, 12, 14 | 3bitr3d 298 |
. . 3
|
| 16 | 4, 15 | anbi12d 747 |
. 2
|
| 17 | eqid 2622 |
. . 3
| |
| 18 | eqid 2622 |
. . 3
| |
| 19 | eqid 2622 |
. . 3
| |
| 20 | 17, 18, 19 | isgrp 17428 |
. 2
|
| 21 | eqid 2622 |
. . 3
| |
| 22 | eqid 2622 |
. . 3
| |
| 23 | eqid 2622 |
. . 3
| |
| 24 | 21, 22, 23 | isgrp 17428 |
. 2
|
| 25 | 16, 20, 24 | 3bitr4g 303 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-0g 16102 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-grp 17425 |
| This theorem is referenced by: grpprop 17438 ghmpropd 17698 oppggrpb 17788 ablpropd 18203 ringpropd 18582 lmodprop2d 18925 sralmod 19187 nmpropd2 22399 ngppropd 22441 tngngp2 22456 tnggrpr 22459 zhmnrg 30011 |
| Copyright terms: Public domain | W3C validator |