MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ngppropd Structured version   Visualization version   Unicode version

Theorem ngppropd 22441
Description: Property deduction for a normed group. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
ngppropd.1  |-  ( ph  ->  B  =  ( Base `  K ) )
ngppropd.2  |-  ( ph  ->  B  =  ( Base `  L ) )
ngppropd.3  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
ngppropd.4  |-  ( ph  ->  ( ( dist `  K
)  |`  ( B  X.  B ) )  =  ( ( dist `  L
)  |`  ( B  X.  B ) ) )
ngppropd.5  |-  ( ph  ->  ( TopOpen `  K )  =  ( TopOpen `  L
) )
Assertion
Ref Expression
ngppropd  |-  ( ph  ->  ( K  e. NrmGrp  <->  L  e. NrmGrp ) )
Distinct variable groups:    x, y, B    x, K, y    x, L, y    ph, x, y

Proof of Theorem ngppropd
StepHypRef Expression
1 ngppropd.1 . . . . . . . 8  |-  ( ph  ->  B  =  ( Base `  K ) )
2 ngppropd.2 . . . . . . . 8  |-  ( ph  ->  B  =  ( Base `  L ) )
3 ngppropd.4 . . . . . . . 8  |-  ( ph  ->  ( ( dist `  K
)  |`  ( B  X.  B ) )  =  ( ( dist `  L
)  |`  ( B  X.  B ) ) )
4 ngppropd.5 . . . . . . . 8  |-  ( ph  ->  ( TopOpen `  K )  =  ( TopOpen `  L
) )
51, 2, 3, 4mspropd 22279 . . . . . . 7  |-  ( ph  ->  ( K  e.  MetSp  <->  L  e.  MetSp ) )
65adantr 481 . . . . . 6  |-  ( (
ph  /\  K  e.  Grp )  ->  ( K  e.  MetSp 
<->  L  e.  MetSp ) )
71adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  K  e.  Grp )  ->  B  =  ( Base `  K
) )
82adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  K  e.  Grp )  ->  B  =  ( Base `  L
) )
9 simpr 477 . . . . . . . . 9  |-  ( (
ph  /\  K  e.  Grp )  ->  K  e. 
Grp )
10 ngppropd.3 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
1110adantlr 751 . . . . . . . . 9  |-  ( ( ( ph  /\  K  e.  Grp )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( x
( +g  `  K ) y )  =  ( x ( +g  `  L
) y ) )
123adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  K  e.  Grp )  ->  ( (
dist `  K )  |`  ( B  X.  B
) )  =  ( ( dist `  L
)  |`  ( B  X.  B ) ) )
137, 8, 9, 11, 12nmpropd2 22399 . . . . . . . 8  |-  ( (
ph  /\  K  e.  Grp )  ->  ( norm `  K )  =  (
norm `  L )
)
147, 8, 9, 11grpsubpropd2 17521 . . . . . . . 8  |-  ( (
ph  /\  K  e.  Grp )  ->  ( -g `  K )  =  (
-g `  L )
)
1513, 14coeq12d 5286 . . . . . . 7  |-  ( (
ph  /\  K  e.  Grp )  ->  ( (
norm `  K )  o.  ( -g `  K
) )  =  ( ( norm `  L
)  o.  ( -g `  L ) ) )
161sqxpeqd 5141 . . . . . . . . . 10  |-  ( ph  ->  ( B  X.  B
)  =  ( (
Base `  K )  X.  ( Base `  K
) ) )
1716reseq2d 5396 . . . . . . . . 9  |-  ( ph  ->  ( ( dist `  K
)  |`  ( B  X.  B ) )  =  ( ( dist `  K
)  |`  ( ( Base `  K )  X.  ( Base `  K ) ) ) )
182sqxpeqd 5141 . . . . . . . . . 10  |-  ( ph  ->  ( B  X.  B
)  =  ( (
Base `  L )  X.  ( Base `  L
) ) )
1918reseq2d 5396 . . . . . . . . 9  |-  ( ph  ->  ( ( dist `  L
)  |`  ( B  X.  B ) )  =  ( ( dist `  L
)  |`  ( ( Base `  L )  X.  ( Base `  L ) ) ) )
203, 17, 193eqtr3d 2664 . . . . . . . 8  |-  ( ph  ->  ( ( dist `  K
)  |`  ( ( Base `  K )  X.  ( Base `  K ) ) )  =  ( (
dist `  L )  |`  ( ( Base `  L
)  X.  ( Base `  L ) ) ) )
2120adantr 481 . . . . . . 7  |-  ( (
ph  /\  K  e.  Grp )  ->  ( (
dist `  K )  |`  ( ( Base `  K
)  X.  ( Base `  K ) ) )  =  ( ( dist `  L )  |`  (
( Base `  L )  X.  ( Base `  L
) ) ) )
2215, 21eqeq12d 2637 . . . . . 6  |-  ( (
ph  /\  K  e.  Grp )  ->  ( ( ( norm `  K
)  o.  ( -g `  K ) )  =  ( ( dist `  K
)  |`  ( ( Base `  K )  X.  ( Base `  K ) ) )  <->  ( ( norm `  L )  o.  ( -g `  L ) )  =  ( ( dist `  L )  |`  (
( Base `  L )  X.  ( Base `  L
) ) ) ) )
236, 22anbi12d 747 . . . . 5  |-  ( (
ph  /\  K  e.  Grp )  ->  ( ( K  e.  MetSp  /\  (
( norm `  K )  o.  ( -g `  K
) )  =  ( ( dist `  K
)  |`  ( ( Base `  K )  X.  ( Base `  K ) ) ) )  <->  ( L  e.  MetSp  /\  ( ( norm `  L )  o.  ( -g `  L
) )  =  ( ( dist `  L
)  |`  ( ( Base `  L )  X.  ( Base `  L ) ) ) ) ) )
2423pm5.32da 673 . . . 4  |-  ( ph  ->  ( ( K  e. 
Grp  /\  ( K  e.  MetSp  /\  ( ( norm `  K )  o.  ( -g `  K
) )  =  ( ( dist `  K
)  |`  ( ( Base `  K )  X.  ( Base `  K ) ) ) ) )  <->  ( K  e.  Grp  /\  ( L  e.  MetSp  /\  ( ( norm `  L )  o.  ( -g `  L
) )  =  ( ( dist `  L
)  |`  ( ( Base `  L )  X.  ( Base `  L ) ) ) ) ) ) )
251, 2, 10grppropd 17437 . . . . 5  |-  ( ph  ->  ( K  e.  Grp  <->  L  e.  Grp ) )
2625anbi1d 741 . . . 4  |-  ( ph  ->  ( ( K  e. 
Grp  /\  ( L  e.  MetSp  /\  ( ( norm `  L )  o.  ( -g `  L
) )  =  ( ( dist `  L
)  |`  ( ( Base `  L )  X.  ( Base `  L ) ) ) ) )  <->  ( L  e.  Grp  /\  ( L  e.  MetSp  /\  ( ( norm `  L )  o.  ( -g `  L
) )  =  ( ( dist `  L
)  |`  ( ( Base `  L )  X.  ( Base `  L ) ) ) ) ) ) )
2724, 26bitrd 268 . . 3  |-  ( ph  ->  ( ( K  e. 
Grp  /\  ( K  e.  MetSp  /\  ( ( norm `  K )  o.  ( -g `  K
) )  =  ( ( dist `  K
)  |`  ( ( Base `  K )  X.  ( Base `  K ) ) ) ) )  <->  ( L  e.  Grp  /\  ( L  e.  MetSp  /\  ( ( norm `  L )  o.  ( -g `  L
) )  =  ( ( dist `  L
)  |`  ( ( Base `  L )  X.  ( Base `  L ) ) ) ) ) ) )
28 3anass 1042 . . 3  |-  ( ( K  e.  Grp  /\  K  e.  MetSp  /\  (
( norm `  K )  o.  ( -g `  K
) )  =  ( ( dist `  K
)  |`  ( ( Base `  K )  X.  ( Base `  K ) ) ) )  <->  ( K  e.  Grp  /\  ( K  e.  MetSp  /\  ( ( norm `  K )  o.  ( -g `  K
) )  =  ( ( dist `  K
)  |`  ( ( Base `  K )  X.  ( Base `  K ) ) ) ) ) )
29 3anass 1042 . . 3  |-  ( ( L  e.  Grp  /\  L  e.  MetSp  /\  (
( norm `  L )  o.  ( -g `  L
) )  =  ( ( dist `  L
)  |`  ( ( Base `  L )  X.  ( Base `  L ) ) ) )  <->  ( L  e.  Grp  /\  ( L  e.  MetSp  /\  ( ( norm `  L )  o.  ( -g `  L
) )  =  ( ( dist `  L
)  |`  ( ( Base `  L )  X.  ( Base `  L ) ) ) ) ) )
3027, 28, 293bitr4g 303 . 2  |-  ( ph  ->  ( ( K  e. 
Grp  /\  K  e.  MetSp  /\  ( ( norm `  K
)  o.  ( -g `  K ) )  =  ( ( dist `  K
)  |`  ( ( Base `  K )  X.  ( Base `  K ) ) ) )  <->  ( L  e.  Grp  /\  L  e. 
MetSp  /\  ( ( norm `  L )  o.  ( -g `  L ) )  =  ( ( dist `  L )  |`  (
( Base `  L )  X.  ( Base `  L
) ) ) ) ) )
31 eqid 2622 . . 3  |-  ( norm `  K )  =  (
norm `  K )
32 eqid 2622 . . 3  |-  ( -g `  K )  =  (
-g `  K )
33 eqid 2622 . . 3  |-  ( dist `  K )  =  (
dist `  K )
34 eqid 2622 . . 3  |-  ( Base `  K )  =  (
Base `  K )
35 eqid 2622 . . 3  |-  ( (
dist `  K )  |`  ( ( Base `  K
)  X.  ( Base `  K ) ) )  =  ( ( dist `  K )  |`  (
( Base `  K )  X.  ( Base `  K
) ) )
3631, 32, 33, 34, 35isngp2 22401 . 2  |-  ( K  e. NrmGrp 
<->  ( K  e.  Grp  /\  K  e.  MetSp  /\  (
( norm `  K )  o.  ( -g `  K
) )  =  ( ( dist `  K
)  |`  ( ( Base `  K )  X.  ( Base `  K ) ) ) ) )
37 eqid 2622 . . 3  |-  ( norm `  L )  =  (
norm `  L )
38 eqid 2622 . . 3  |-  ( -g `  L )  =  (
-g `  L )
39 eqid 2622 . . 3  |-  ( dist `  L )  =  (
dist `  L )
40 eqid 2622 . . 3  |-  ( Base `  L )  =  (
Base `  L )
41 eqid 2622 . . 3  |-  ( (
dist `  L )  |`  ( ( Base `  L
)  X.  ( Base `  L ) ) )  =  ( ( dist `  L )  |`  (
( Base `  L )  X.  ( Base `  L
) ) )
4237, 38, 39, 40, 41isngp2 22401 . 2  |-  ( L  e. NrmGrp 
<->  ( L  e.  Grp  /\  L  e.  MetSp  /\  (
( norm `  L )  o.  ( -g `  L
) )  =  ( ( dist `  L
)  |`  ( ( Base `  L )  X.  ( Base `  L ) ) ) ) )
4330, 36, 423bitr4g 303 1  |-  ( ph  ->  ( K  e. NrmGrp  <->  L  e. NrmGrp ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    X. cxp 5112    |` cres 5116    o. ccom 5118   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941   distcds 15950   TopOpenctopn 16082   Grpcgrp 17422   -gcsg 17424   MetSpcmt 22123   normcnm 22381  NrmGrpcngp 22382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-0g 16102  df-topgen 16104  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-xms 22125  df-ms 22126  df-nm 22387  df-ngp 22388
This theorem is referenced by:  sranlm  22488
  Copyright terms: Public domain W3C validator