| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpsubpropd2 | Structured version Visualization version Unicode version | ||
| Description: Strong property deduction for the group subtraction operation. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| Ref | Expression |
|---|---|
| grpsubpropd2.1 |
|
| grpsubpropd2.2 |
|
| grpsubpropd2.3 |
|
| grpsubpropd2.4 |
|
| Ref | Expression |
|---|---|
| grpsubpropd2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1061 |
. . . . . 6
| |
| 2 | simp2 1062 |
. . . . . . 7
| |
| 3 | grpsubpropd2.1 |
. . . . . . . 8
| |
| 4 | 3 | 3ad2ant1 1082 |
. . . . . . 7
|
| 5 | 2, 4 | eleqtrrd 2704 |
. . . . . 6
|
| 6 | grpsubpropd2.3 |
. . . . . . . . 9
| |
| 7 | 6 | 3ad2ant1 1082 |
. . . . . . . 8
|
| 8 | simp3 1063 |
. . . . . . . 8
| |
| 9 | eqid 2622 |
. . . . . . . . 9
| |
| 10 | eqid 2622 |
. . . . . . . . 9
| |
| 11 | 9, 10 | grpinvcl 17467 |
. . . . . . . 8
|
| 12 | 7, 8, 11 | syl2anc 693 |
. . . . . . 7
|
| 13 | 12, 4 | eleqtrrd 2704 |
. . . . . 6
|
| 14 | grpsubpropd2.4 |
. . . . . . 7
| |
| 15 | 14 | oveqrspc2v 6673 |
. . . . . 6
|
| 16 | 1, 5, 13, 15 | syl12anc 1324 |
. . . . 5
|
| 17 | grpsubpropd2.2 |
. . . . . . . . 9
| |
| 18 | 3, 17, 14 | grpinvpropd 17490 |
. . . . . . . 8
|
| 19 | 18 | fveq1d 6193 |
. . . . . . 7
|
| 20 | 19 | oveq2d 6666 |
. . . . . 6
|
| 21 | 20 | 3ad2ant1 1082 |
. . . . 5
|
| 22 | 16, 21 | eqtrd 2656 |
. . . 4
|
| 23 | 22 | mpt2eq3dva 6719 |
. . 3
|
| 24 | 3, 17 | eqtr3d 2658 |
. . . 4
|
| 25 | mpt2eq12 6715 |
. . . 4
| |
| 26 | 24, 24, 25 | syl2anc 693 |
. . 3
|
| 27 | 23, 26 | eqtrd 2656 |
. 2
|
| 28 | eqid 2622 |
. . 3
| |
| 29 | eqid 2622 |
. . 3
| |
| 30 | 9, 28, 10, 29 | grpsubfval 17464 |
. 2
|
| 31 | eqid 2622 |
. . 3
| |
| 32 | eqid 2622 |
. . 3
| |
| 33 | eqid 2622 |
. . 3
| |
| 34 | eqid 2622 |
. . 3
| |
| 35 | 31, 32, 33, 34 | grpsubfval 17464 |
. 2
|
| 36 | 27, 30, 35 | 3eqtr4g 2681 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-0g 16102 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-grp 17425 df-minusg 17426 df-sbg 17427 |
| This theorem is referenced by: ngppropd 22441 |
| Copyright terms: Public domain | W3C validator |