| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpinvcl | Structured version Visualization version Unicode version | ||
| Description: A group element's inverse is a group element. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 4-May-2015.) |
| Ref | Expression |
|---|---|
| grpinvcl.b |
|
| grpinvcl.n |
|
| Ref | Expression |
|---|---|
| grpinvcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinvcl.b |
. . 3
| |
| 2 | grpinvcl.n |
. . 3
| |
| 3 | 1, 2 | grpinvf 17466 |
. 2
|
| 4 | 3 | ffvelrnda 6359 |
1
|
| Copyright terms: Public domain | W3C validator |