| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hausnei | Structured version Visualization version Unicode version | ||
| Description: Neighborhood property of a Hausdorff space. (Contributed by NM, 8-Mar-2007.) |
| Ref | Expression |
|---|---|
| ist0.1 |
|
| Ref | Expression |
|---|---|
| hausnei |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ist0.1 |
. . . . . . 7
| |
| 2 | 1 | ishaus 21126 |
. . . . . 6
|
| 3 | 2 | simprbi 480 |
. . . . 5
|
| 4 | neeq1 2856 |
. . . . . . 7
| |
| 5 | eleq1 2689 |
. . . . . . . . 9
| |
| 6 | 5 | 3anbi1d 1403 |
. . . . . . . 8
|
| 7 | 6 | 2rexbidv 3057 |
. . . . . . 7
|
| 8 | 4, 7 | imbi12d 334 |
. . . . . 6
|
| 9 | neeq2 2857 |
. . . . . . 7
| |
| 10 | eleq1 2689 |
. . . . . . . . 9
| |
| 11 | 10 | 3anbi2d 1404 |
. . . . . . . 8
|
| 12 | 11 | 2rexbidv 3057 |
. . . . . . 7
|
| 13 | 9, 12 | imbi12d 334 |
. . . . . 6
|
| 14 | 8, 13 | rspc2v 3322 |
. . . . 5
|
| 15 | 3, 14 | syl5 34 |
. . . 4
|
| 16 | 15 | ex 450 |
. . 3
|
| 17 | 16 | com3r 87 |
. 2
|
| 18 | 17 | 3imp2 1282 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-uni 4437 df-haus 21119 |
| This theorem is referenced by: haust1 21156 cnhaus 21158 lmmo 21184 hauscmplem 21209 pthaus 21441 txhaus 21450 xkohaus 21456 hausflimi 21784 hauspwpwf1 21791 |
| Copyright terms: Public domain | W3C validator |