MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txhaus Structured version   Visualization version   Unicode version

Theorem txhaus 21450
Description: The topological product of two Hausdorff spaces is Hausdorff. (Contributed by Mario Carneiro, 23-Mar-2015.)
Assertion
Ref Expression
txhaus  |-  ( ( R  e.  Haus  /\  S  e.  Haus )  ->  ( R  tX  S )  e. 
Haus )

Proof of Theorem txhaus
Dummy variables  v  u  w  x  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 haustop 21135 . . 3  |-  ( R  e.  Haus  ->  R  e. 
Top )
2 haustop 21135 . . 3  |-  ( S  e.  Haus  ->  S  e. 
Top )
3 txtop 21372 . . 3  |-  ( ( R  e.  Top  /\  S  e.  Top )  ->  ( R  tX  S
)  e.  Top )
41, 2, 3syl2an 494 . 2  |-  ( ( R  e.  Haus  /\  S  e.  Haus )  ->  ( R  tX  S )  e. 
Top )
5 eqid 2622 . . . . . . . 8  |-  U. R  =  U. R
6 eqid 2622 . . . . . . . 8  |-  U. S  =  U. S
75, 6txuni 21395 . . . . . . 7  |-  ( ( R  e.  Top  /\  S  e.  Top )  ->  ( U. R  X.  U. S )  =  U. ( R  tX  S ) )
81, 2, 7syl2an 494 . . . . . 6  |-  ( ( R  e.  Haus  /\  S  e.  Haus )  ->  ( U. R  X.  U. S
)  =  U. ( R  tX  S ) )
98eleq2d 2687 . . . . 5  |-  ( ( R  e.  Haus  /\  S  e.  Haus )  ->  (
x  e.  ( U. R  X.  U. S )  <-> 
x  e.  U. ( R  tX  S ) ) )
108eleq2d 2687 . . . . 5  |-  ( ( R  e.  Haus  /\  S  e.  Haus )  ->  (
y  e.  ( U. R  X.  U. S )  <-> 
y  e.  U. ( R  tX  S ) ) )
119, 10anbi12d 747 . . . 4  |-  ( ( R  e.  Haus  /\  S  e.  Haus )  ->  (
( x  e.  ( U. R  X.  U. S )  /\  y  e.  ( U. R  X.  U. S ) )  <->  ( x  e.  U. ( R  tX  S )  /\  y  e.  U. ( R  tX  S ) ) ) )
12 neorian 2888 . . . . . . 7  |-  ( ( ( 1st `  x
)  =/=  ( 1st `  y )  \/  ( 2nd `  x )  =/=  ( 2nd `  y
) )  <->  -.  (
( 1st `  x
)  =  ( 1st `  y )  /\  ( 2nd `  x )  =  ( 2nd `  y
) ) )
13 xpopth 7207 . . . . . . . . 9  |-  ( ( x  e.  ( U. R  X.  U. S )  /\  y  e.  ( U. R  X.  U. S ) )  -> 
( ( ( 1st `  x )  =  ( 1st `  y )  /\  ( 2nd `  x
)  =  ( 2nd `  y ) )  <->  x  =  y ) )
1413adantl 482 . . . . . . . 8  |-  ( ( ( R  e.  Haus  /\  S  e.  Haus )  /\  ( x  e.  ( U. R  X.  U. S )  /\  y  e.  ( U. R  X.  U. S ) ) )  ->  ( ( ( 1st `  x )  =  ( 1st `  y
)  /\  ( 2nd `  x )  =  ( 2nd `  y ) )  <->  x  =  y
) )
1514necon3bbid 2831 . . . . . . 7  |-  ( ( ( R  e.  Haus  /\  S  e.  Haus )  /\  ( x  e.  ( U. R  X.  U. S )  /\  y  e.  ( U. R  X.  U. S ) ) )  ->  ( -.  (
( 1st `  x
)  =  ( 1st `  y )  /\  ( 2nd `  x )  =  ( 2nd `  y
) )  <->  x  =/=  y ) )
1612, 15syl5bb 272 . . . . . 6  |-  ( ( ( R  e.  Haus  /\  S  e.  Haus )  /\  ( x  e.  ( U. R  X.  U. S )  /\  y  e.  ( U. R  X.  U. S ) ) )  ->  ( ( ( 1st `  x )  =/=  ( 1st `  y
)  \/  ( 2nd `  x )  =/=  ( 2nd `  y ) )  <-> 
x  =/=  y ) )
17 simplll 798 . . . . . . . . . 10  |-  ( ( ( ( R  e. 
Haus  /\  S  e.  Haus )  /\  ( x  e.  ( U. R  X.  U. S )  /\  y  e.  ( U. R  X.  U. S ) ) )  /\  ( 1st `  x
)  =/=  ( 1st `  y ) )  ->  R  e.  Haus )
18 xp1st 7198 . . . . . . . . . . . 12  |-  ( x  e.  ( U. R  X.  U. S )  -> 
( 1st `  x
)  e.  U. R
)
1918ad2antrl 764 . . . . . . . . . . 11  |-  ( ( ( R  e.  Haus  /\  S  e.  Haus )  /\  ( x  e.  ( U. R  X.  U. S )  /\  y  e.  ( U. R  X.  U. S ) ) )  ->  ( 1st `  x
)  e.  U. R
)
2019adantr 481 . . . . . . . . . 10  |-  ( ( ( ( R  e. 
Haus  /\  S  e.  Haus )  /\  ( x  e.  ( U. R  X.  U. S )  /\  y  e.  ( U. R  X.  U. S ) ) )  /\  ( 1st `  x
)  =/=  ( 1st `  y ) )  -> 
( 1st `  x
)  e.  U. R
)
21 xp1st 7198 . . . . . . . . . . . 12  |-  ( y  e.  ( U. R  X.  U. S )  -> 
( 1st `  y
)  e.  U. R
)
2221ad2antll 765 . . . . . . . . . . 11  |-  ( ( ( R  e.  Haus  /\  S  e.  Haus )  /\  ( x  e.  ( U. R  X.  U. S )  /\  y  e.  ( U. R  X.  U. S ) ) )  ->  ( 1st `  y
)  e.  U. R
)
2322adantr 481 . . . . . . . . . 10  |-  ( ( ( ( R  e. 
Haus  /\  S  e.  Haus )  /\  ( x  e.  ( U. R  X.  U. S )  /\  y  e.  ( U. R  X.  U. S ) ) )  /\  ( 1st `  x
)  =/=  ( 1st `  y ) )  -> 
( 1st `  y
)  e.  U. R
)
24 simpr 477 . . . . . . . . . 10  |-  ( ( ( ( R  e. 
Haus  /\  S  e.  Haus )  /\  ( x  e.  ( U. R  X.  U. S )  /\  y  e.  ( U. R  X.  U. S ) ) )  /\  ( 1st `  x
)  =/=  ( 1st `  y ) )  -> 
( 1st `  x
)  =/=  ( 1st `  y ) )
255hausnei 21132 . . . . . . . . . 10  |-  ( ( R  e.  Haus  /\  (
( 1st `  x
)  e.  U. R  /\  ( 1st `  y
)  e.  U. R  /\  ( 1st `  x
)  =/=  ( 1st `  y ) ) )  ->  E. u  e.  R  E. v  e.  R  ( ( 1st `  x
)  e.  u  /\  ( 1st `  y )  e.  v  /\  (
u  i^i  v )  =  (/) ) )
2617, 20, 23, 24, 25syl13anc 1328 . . . . . . . . 9  |-  ( ( ( ( R  e. 
Haus  /\  S  e.  Haus )  /\  ( x  e.  ( U. R  X.  U. S )  /\  y  e.  ( U. R  X.  U. S ) ) )  /\  ( 1st `  x
)  =/=  ( 1st `  y ) )  ->  E. u  e.  R  E. v  e.  R  ( ( 1st `  x
)  e.  u  /\  ( 1st `  y )  e.  v  /\  (
u  i^i  v )  =  (/) ) )
271ad2antrr 762 . . . . . . . . . . . . . 14  |-  ( ( ( R  e.  Haus  /\  S  e.  Haus )  /\  ( x  e.  ( U. R  X.  U. S )  /\  y  e.  ( U. R  X.  U. S ) ) )  ->  R  e.  Top )
2827ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( ( ( R  e.  Haus  /\  S  e. 
Haus )  /\  (
x  e.  ( U. R  X.  U. S )  /\  y  e.  ( U. R  X.  U. S ) ) )  /\  ( 1st `  x
)  =/=  ( 1st `  y ) )  /\  ( ( u  e.  R  /\  v  e.  R )  /\  (
( 1st `  x
)  e.  u  /\  ( 1st `  y )  e.  v  /\  (
u  i^i  v )  =  (/) ) ) )  ->  R  e.  Top )
292ad4antlr 769 . . . . . . . . . . . . 13  |-  ( ( ( ( ( R  e.  Haus  /\  S  e. 
Haus )  /\  (
x  e.  ( U. R  X.  U. S )  /\  y  e.  ( U. R  X.  U. S ) ) )  /\  ( 1st `  x
)  =/=  ( 1st `  y ) )  /\  ( ( u  e.  R  /\  v  e.  R )  /\  (
( 1st `  x
)  e.  u  /\  ( 1st `  y )  e.  v  /\  (
u  i^i  v )  =  (/) ) ) )  ->  S  e.  Top )
30 simprll 802 . . . . . . . . . . . . 13  |-  ( ( ( ( ( R  e.  Haus  /\  S  e. 
Haus )  /\  (
x  e.  ( U. R  X.  U. S )  /\  y  e.  ( U. R  X.  U. S ) ) )  /\  ( 1st `  x
)  =/=  ( 1st `  y ) )  /\  ( ( u  e.  R  /\  v  e.  R )  /\  (
( 1st `  x
)  e.  u  /\  ( 1st `  y )  e.  v  /\  (
u  i^i  v )  =  (/) ) ) )  ->  u  e.  R
)
316topopn 20711 . . . . . . . . . . . . . 14  |-  ( S  e.  Top  ->  U. S  e.  S )
3229, 31syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ( ( R  e.  Haus  /\  S  e. 
Haus )  /\  (
x  e.  ( U. R  X.  U. S )  /\  y  e.  ( U. R  X.  U. S ) ) )  /\  ( 1st `  x
)  =/=  ( 1st `  y ) )  /\  ( ( u  e.  R  /\  v  e.  R )  /\  (
( 1st `  x
)  e.  u  /\  ( 1st `  y )  e.  v  /\  (
u  i^i  v )  =  (/) ) ) )  ->  U. S  e.  S
)
33 txopn 21405 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  Top  /\  S  e.  Top )  /\  ( u  e.  R  /\  U. S  e.  S
) )  ->  (
u  X.  U. S
)  e.  ( R 
tX  S ) )
3428, 29, 30, 32, 33syl22anc 1327 . . . . . . . . . . . 12  |-  ( ( ( ( ( R  e.  Haus  /\  S  e. 
Haus )  /\  (
x  e.  ( U. R  X.  U. S )  /\  y  e.  ( U. R  X.  U. S ) ) )  /\  ( 1st `  x
)  =/=  ( 1st `  y ) )  /\  ( ( u  e.  R  /\  v  e.  R )  /\  (
( 1st `  x
)  e.  u  /\  ( 1st `  y )  e.  v  /\  (
u  i^i  v )  =  (/) ) ) )  ->  ( u  X.  U. S )  e.  ( R  tX  S ) )
35 simprlr 803 . . . . . . . . . . . . 13  |-  ( ( ( ( ( R  e.  Haus  /\  S  e. 
Haus )  /\  (
x  e.  ( U. R  X.  U. S )  /\  y  e.  ( U. R  X.  U. S ) ) )  /\  ( 1st `  x
)  =/=  ( 1st `  y ) )  /\  ( ( u  e.  R  /\  v  e.  R )  /\  (
( 1st `  x
)  e.  u  /\  ( 1st `  y )  e.  v  /\  (
u  i^i  v )  =  (/) ) ) )  ->  v  e.  R
)
36 txopn 21405 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  Top  /\  S  e.  Top )  /\  ( v  e.  R  /\  U. S  e.  S
) )  ->  (
v  X.  U. S
)  e.  ( R 
tX  S ) )
3728, 29, 35, 32, 36syl22anc 1327 . . . . . . . . . . . 12  |-  ( ( ( ( ( R  e.  Haus  /\  S  e. 
Haus )  /\  (
x  e.  ( U. R  X.  U. S )  /\  y  e.  ( U. R  X.  U. S ) ) )  /\  ( 1st `  x
)  =/=  ( 1st `  y ) )  /\  ( ( u  e.  R  /\  v  e.  R )  /\  (
( 1st `  x
)  e.  u  /\  ( 1st `  y )  e.  v  /\  (
u  i^i  v )  =  (/) ) ) )  ->  ( v  X. 
U. S )  e.  ( R  tX  S
) )
38 1st2nd2 7205 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( U. R  X.  U. S )  ->  x  =  <. ( 1st `  x ) ,  ( 2nd `  x )
>. )
3938ad2antrl 764 . . . . . . . . . . . . . 14  |-  ( ( ( R  e.  Haus  /\  S  e.  Haus )  /\  ( x  e.  ( U. R  X.  U. S )  /\  y  e.  ( U. R  X.  U. S ) ) )  ->  x  =  <. ( 1st `  x ) ,  ( 2nd `  x
) >. )
4039ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( ( ( R  e.  Haus  /\  S  e. 
Haus )  /\  (
x  e.  ( U. R  X.  U. S )  /\  y  e.  ( U. R  X.  U. S ) ) )  /\  ( 1st `  x
)  =/=  ( 1st `  y ) )  /\  ( ( u  e.  R  /\  v  e.  R )  /\  (
( 1st `  x
)  e.  u  /\  ( 1st `  y )  e.  v  /\  (
u  i^i  v )  =  (/) ) ) )  ->  x  =  <. ( 1st `  x ) ,  ( 2nd `  x
) >. )
41 simprr1 1109 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( R  e.  Haus  /\  S  e. 
Haus )  /\  (
x  e.  ( U. R  X.  U. S )  /\  y  e.  ( U. R  X.  U. S ) ) )  /\  ( 1st `  x
)  =/=  ( 1st `  y ) )  /\  ( ( u  e.  R  /\  v  e.  R )  /\  (
( 1st `  x
)  e.  u  /\  ( 1st `  y )  e.  v  /\  (
u  i^i  v )  =  (/) ) ) )  ->  ( 1st `  x
)  e.  u )
42 xp2nd 7199 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( U. R  X.  U. S )  -> 
( 2nd `  x
)  e.  U. S
)
4342ad2antrl 764 . . . . . . . . . . . . . . 15  |-  ( ( ( R  e.  Haus  /\  S  e.  Haus )  /\  ( x  e.  ( U. R  X.  U. S )  /\  y  e.  ( U. R  X.  U. S ) ) )  ->  ( 2nd `  x
)  e.  U. S
)
4443ad2antrr 762 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( R  e.  Haus  /\  S  e. 
Haus )  /\  (
x  e.  ( U. R  X.  U. S )  /\  y  e.  ( U. R  X.  U. S ) ) )  /\  ( 1st `  x
)  =/=  ( 1st `  y ) )  /\  ( ( u  e.  R  /\  v  e.  R )  /\  (
( 1st `  x
)  e.  u  /\  ( 1st `  y )  e.  v  /\  (
u  i^i  v )  =  (/) ) ) )  ->  ( 2nd `  x
)  e.  U. S
)
4541, 44jca 554 . . . . . . . . . . . . 13  |-  ( ( ( ( ( R  e.  Haus  /\  S  e. 
Haus )  /\  (
x  e.  ( U. R  X.  U. S )  /\  y  e.  ( U. R  X.  U. S ) ) )  /\  ( 1st `  x
)  =/=  ( 1st `  y ) )  /\  ( ( u  e.  R  /\  v  e.  R )  /\  (
( 1st `  x
)  e.  u  /\  ( 1st `  y )  e.  v  /\  (
u  i^i  v )  =  (/) ) ) )  ->  ( ( 1st `  x )  e.  u  /\  ( 2nd `  x
)  e.  U. S
) )
46 elxp6 7200 . . . . . . . . . . . . 13  |-  ( x  e.  ( u  X.  U. S )  <->  ( x  =  <. ( 1st `  x
) ,  ( 2nd `  x ) >.  /\  (
( 1st `  x
)  e.  u  /\  ( 2nd `  x )  e.  U. S ) ) )
4740, 45, 46sylanbrc 698 . . . . . . . . . . . 12  |-  ( ( ( ( ( R  e.  Haus  /\  S  e. 
Haus )  /\  (
x  e.  ( U. R  X.  U. S )  /\  y  e.  ( U. R  X.  U. S ) ) )  /\  ( 1st `  x
)  =/=  ( 1st `  y ) )  /\  ( ( u  e.  R  /\  v  e.  R )  /\  (
( 1st `  x
)  e.  u  /\  ( 1st `  y )  e.  v  /\  (
u  i^i  v )  =  (/) ) ) )  ->  x  e.  ( u  X.  U. S
) )
48 1st2nd2 7205 . . . . . . . . . . . . . . 15  |-  ( y  e.  ( U. R  X.  U. S )  -> 
y  =  <. ( 1st `  y ) ,  ( 2nd `  y
) >. )
4948ad2antll 765 . . . . . . . . . . . . . 14  |-  ( ( ( R  e.  Haus  /\  S  e.  Haus )  /\  ( x  e.  ( U. R  X.  U. S )  /\  y  e.  ( U. R  X.  U. S ) ) )  ->  y  =  <. ( 1st `  y ) ,  ( 2nd `  y
) >. )
5049ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( ( ( R  e.  Haus  /\  S  e. 
Haus )  /\  (
x  e.  ( U. R  X.  U. S )  /\  y  e.  ( U. R  X.  U. S ) ) )  /\  ( 1st `  x
)  =/=  ( 1st `  y ) )  /\  ( ( u  e.  R  /\  v  e.  R )  /\  (
( 1st `  x
)  e.  u  /\  ( 1st `  y )  e.  v  /\  (
u  i^i  v )  =  (/) ) ) )  ->  y  =  <. ( 1st `  y ) ,  ( 2nd `  y
) >. )
51 simprr2 1110 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( R  e.  Haus  /\  S  e. 
Haus )  /\  (
x  e.  ( U. R  X.  U. S )  /\  y  e.  ( U. R  X.  U. S ) ) )  /\  ( 1st `  x
)  =/=  ( 1st `  y ) )  /\  ( ( u  e.  R  /\  v  e.  R )  /\  (
( 1st `  x
)  e.  u  /\  ( 1st `  y )  e.  v  /\  (
u  i^i  v )  =  (/) ) ) )  ->  ( 1st `  y
)  e.  v )
52 xp2nd 7199 . . . . . . . . . . . . . . . 16  |-  ( y  e.  ( U. R  X.  U. S )  -> 
( 2nd `  y
)  e.  U. S
)
5352ad2antll 765 . . . . . . . . . . . . . . 15  |-  ( ( ( R  e.  Haus  /\  S  e.  Haus )  /\  ( x  e.  ( U. R  X.  U. S )  /\  y  e.  ( U. R  X.  U. S ) ) )  ->  ( 2nd `  y
)  e.  U. S
)
5453ad2antrr 762 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( R  e.  Haus  /\  S  e. 
Haus )  /\  (
x  e.  ( U. R  X.  U. S )  /\  y  e.  ( U. R  X.  U. S ) ) )  /\  ( 1st `  x
)  =/=  ( 1st `  y ) )  /\  ( ( u  e.  R  /\  v  e.  R )  /\  (
( 1st `  x
)  e.  u  /\  ( 1st `  y )  e.  v  /\  (
u  i^i  v )  =  (/) ) ) )  ->  ( 2nd `  y
)  e.  U. S
)
5551, 54jca 554 . . . . . . . . . . . . 13  |-  ( ( ( ( ( R  e.  Haus  /\  S  e. 
Haus )  /\  (
x  e.  ( U. R  X.  U. S )  /\  y  e.  ( U. R  X.  U. S ) ) )  /\  ( 1st `  x
)  =/=  ( 1st `  y ) )  /\  ( ( u  e.  R  /\  v  e.  R )  /\  (
( 1st `  x
)  e.  u  /\  ( 1st `  y )  e.  v  /\  (
u  i^i  v )  =  (/) ) ) )  ->  ( ( 1st `  y )  e.  v  /\  ( 2nd `  y
)  e.  U. S
) )
56 elxp6 7200 . . . . . . . . . . . . 13  |-  ( y  e.  ( v  X. 
U. S )  <->  ( y  =  <. ( 1st `  y
) ,  ( 2nd `  y ) >.  /\  (
( 1st `  y
)  e.  v  /\  ( 2nd `  y )  e.  U. S ) ) )
5750, 55, 56sylanbrc 698 . . . . . . . . . . . 12  |-  ( ( ( ( ( R  e.  Haus  /\  S  e. 
Haus )  /\  (
x  e.  ( U. R  X.  U. S )  /\  y  e.  ( U. R  X.  U. S ) ) )  /\  ( 1st `  x
)  =/=  ( 1st `  y ) )  /\  ( ( u  e.  R  /\  v  e.  R )  /\  (
( 1st `  x
)  e.  u  /\  ( 1st `  y )  e.  v  /\  (
u  i^i  v )  =  (/) ) ) )  ->  y  e.  ( v  X.  U. S
) )
58 simprr3 1111 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( R  e.  Haus  /\  S  e. 
Haus )  /\  (
x  e.  ( U. R  X.  U. S )  /\  y  e.  ( U. R  X.  U. S ) ) )  /\  ( 1st `  x
)  =/=  ( 1st `  y ) )  /\  ( ( u  e.  R  /\  v  e.  R )  /\  (
( 1st `  x
)  e.  u  /\  ( 1st `  y )  e.  v  /\  (
u  i^i  v )  =  (/) ) ) )  ->  ( u  i^i  v )  =  (/) )
5958xpeq1d 5138 . . . . . . . . . . . . 13  |-  ( ( ( ( ( R  e.  Haus  /\  S  e. 
Haus )  /\  (
x  e.  ( U. R  X.  U. S )  /\  y  e.  ( U. R  X.  U. S ) ) )  /\  ( 1st `  x
)  =/=  ( 1st `  y ) )  /\  ( ( u  e.  R  /\  v  e.  R )  /\  (
( 1st `  x
)  e.  u  /\  ( 1st `  y )  e.  v  /\  (
u  i^i  v )  =  (/) ) ) )  ->  ( ( u  i^i  v )  X. 
U. S )  =  ( (/)  X.  U. S
) )
60 xpindir 5256 . . . . . . . . . . . . 13  |-  ( ( u  i^i  v )  X.  U. S )  =  ( ( u  X.  U. S )  i^i  ( v  X. 
U. S ) )
61 0xp 5199 . . . . . . . . . . . . 13  |-  ( (/)  X. 
U. S )  =  (/)
6259, 60, 613eqtr3g 2679 . . . . . . . . . . . 12  |-  ( ( ( ( ( R  e.  Haus  /\  S  e. 
Haus )  /\  (
x  e.  ( U. R  X.  U. S )  /\  y  e.  ( U. R  X.  U. S ) ) )  /\  ( 1st `  x
)  =/=  ( 1st `  y ) )  /\  ( ( u  e.  R  /\  v  e.  R )  /\  (
( 1st `  x
)  e.  u  /\  ( 1st `  y )  e.  v  /\  (
u  i^i  v )  =  (/) ) ) )  ->  ( ( u  X.  U. S )  i^i  ( v  X. 
U. S ) )  =  (/) )
63 eleq2 2690 . . . . . . . . . . . . . 14  |-  ( z  =  ( u  X.  U. S )  ->  (
x  e.  z  <->  x  e.  ( u  X.  U. S
) ) )
64 ineq1 3807 . . . . . . . . . . . . . . 15  |-  ( z  =  ( u  X.  U. S )  ->  (
z  i^i  w )  =  ( ( u  X.  U. S )  i^i  w ) )
6564eqeq1d 2624 . . . . . . . . . . . . . 14  |-  ( z  =  ( u  X.  U. S )  ->  (
( z  i^i  w
)  =  (/)  <->  ( (
u  X.  U. S
)  i^i  w )  =  (/) ) )
6663, 653anbi13d 1401 . . . . . . . . . . . . 13  |-  ( z  =  ( u  X.  U. S )  ->  (
( x  e.  z  /\  y  e.  w  /\  ( z  i^i  w
)  =  (/) )  <->  ( x  e.  ( u  X.  U. S )  /\  y  e.  w  /\  (
( u  X.  U. S )  i^i  w
)  =  (/) ) ) )
67 eleq2 2690 . . . . . . . . . . . . . 14  |-  ( w  =  ( v  X. 
U. S )  -> 
( y  e.  w  <->  y  e.  ( v  X. 
U. S ) ) )
68 ineq2 3808 . . . . . . . . . . . . . . 15  |-  ( w  =  ( v  X. 
U. S )  -> 
( ( u  X.  U. S )  i^i  w
)  =  ( ( u  X.  U. S
)  i^i  ( v  X.  U. S ) ) )
6968eqeq1d 2624 . . . . . . . . . . . . . 14  |-  ( w  =  ( v  X. 
U. S )  -> 
( ( ( u  X.  U. S )  i^i  w )  =  (/) 
<->  ( ( u  X.  U. S )  i^i  (
v  X.  U. S
) )  =  (/) ) )
7067, 693anbi23d 1402 . . . . . . . . . . . . 13  |-  ( w  =  ( v  X. 
U. S )  -> 
( ( x  e.  ( u  X.  U. S )  /\  y  e.  w  /\  (
( u  X.  U. S )  i^i  w
)  =  (/) )  <->  ( x  e.  ( u  X.  U. S )  /\  y  e.  ( v  X.  U. S )  /\  (
( u  X.  U. S )  i^i  (
v  X.  U. S
) )  =  (/) ) ) )
7166, 70rspc2ev 3324 . . . . . . . . . . . 12  |-  ( ( ( u  X.  U. S )  e.  ( R  tX  S )  /\  ( v  X. 
U. S )  e.  ( R  tX  S
)  /\  ( x  e.  ( u  X.  U. S )  /\  y  e.  ( v  X.  U. S )  /\  (
( u  X.  U. S )  i^i  (
v  X.  U. S
) )  =  (/) ) )  ->  E. z  e.  ( R  tX  S
) E. w  e.  ( R  tX  S
) ( x  e.  z  /\  y  e.  w  /\  ( z  i^i  w )  =  (/) ) )
7234, 37, 47, 57, 62, 71syl113anc 1338 . . . . . . . . . . 11  |-  ( ( ( ( ( R  e.  Haus  /\  S  e. 
Haus )  /\  (
x  e.  ( U. R  X.  U. S )  /\  y  e.  ( U. R  X.  U. S ) ) )  /\  ( 1st `  x
)  =/=  ( 1st `  y ) )  /\  ( ( u  e.  R  /\  v  e.  R )  /\  (
( 1st `  x
)  e.  u  /\  ( 1st `  y )  e.  v  /\  (
u  i^i  v )  =  (/) ) ) )  ->  E. z  e.  ( R  tX  S ) E. w  e.  ( R  tX  S ) ( x  e.  z  /\  y  e.  w  /\  ( z  i^i  w
)  =  (/) ) )
7372expr 643 . . . . . . . . . 10  |-  ( ( ( ( ( R  e.  Haus  /\  S  e. 
Haus )  /\  (
x  e.  ( U. R  X.  U. S )  /\  y  e.  ( U. R  X.  U. S ) ) )  /\  ( 1st `  x
)  =/=  ( 1st `  y ) )  /\  ( u  e.  R  /\  v  e.  R
) )  ->  (
( ( 1st `  x
)  e.  u  /\  ( 1st `  y )  e.  v  /\  (
u  i^i  v )  =  (/) )  ->  E. z  e.  ( R  tX  S
) E. w  e.  ( R  tX  S
) ( x  e.  z  /\  y  e.  w  /\  ( z  i^i  w )  =  (/) ) ) )
7473rexlimdvva 3038 . . . . . . . . 9  |-  ( ( ( ( R  e. 
Haus  /\  S  e.  Haus )  /\  ( x  e.  ( U. R  X.  U. S )  /\  y  e.  ( U. R  X.  U. S ) ) )  /\  ( 1st `  x
)  =/=  ( 1st `  y ) )  -> 
( E. u  e.  R  E. v  e.  R  ( ( 1st `  x )  e.  u  /\  ( 1st `  y
)  e.  v  /\  ( u  i^i  v
)  =  (/) )  ->  E. z  e.  ( R  tX  S ) E. w  e.  ( R 
tX  S ) ( x  e.  z  /\  y  e.  w  /\  ( z  i^i  w
)  =  (/) ) ) )
7526, 74mpd 15 . . . . . . . 8  |-  ( ( ( ( R  e. 
Haus  /\  S  e.  Haus )  /\  ( x  e.  ( U. R  X.  U. S )  /\  y  e.  ( U. R  X.  U. S ) ) )  /\  ( 1st `  x
)  =/=  ( 1st `  y ) )  ->  E. z  e.  ( R  tX  S ) E. w  e.  ( R 
tX  S ) ( x  e.  z  /\  y  e.  w  /\  ( z  i^i  w
)  =  (/) ) )
76 simpllr 799 . . . . . . . . . 10  |-  ( ( ( ( R  e. 
Haus  /\  S  e.  Haus )  /\  ( x  e.  ( U. R  X.  U. S )  /\  y  e.  ( U. R  X.  U. S ) ) )  /\  ( 2nd `  x
)  =/=  ( 2nd `  y ) )  ->  S  e.  Haus )
7743adantr 481 . . . . . . . . . 10  |-  ( ( ( ( R  e. 
Haus  /\  S  e.  Haus )  /\  ( x  e.  ( U. R  X.  U. S )  /\  y  e.  ( U. R  X.  U. S ) ) )  /\  ( 2nd `  x
)  =/=  ( 2nd `  y ) )  -> 
( 2nd `  x
)  e.  U. S
)
7853adantr 481 . . . . . . . . . 10  |-  ( ( ( ( R  e. 
Haus  /\  S  e.  Haus )  /\  ( x  e.  ( U. R  X.  U. S )  /\  y  e.  ( U. R  X.  U. S ) ) )  /\  ( 2nd `  x
)  =/=  ( 2nd `  y ) )  -> 
( 2nd `  y
)  e.  U. S
)
79 simpr 477 . . . . . . . . . 10  |-  ( ( ( ( R  e. 
Haus  /\  S  e.  Haus )  /\  ( x  e.  ( U. R  X.  U. S )  /\  y  e.  ( U. R  X.  U. S ) ) )  /\  ( 2nd `  x
)  =/=  ( 2nd `  y ) )  -> 
( 2nd `  x
)  =/=  ( 2nd `  y ) )
806hausnei 21132 . . . . . . . . . 10  |-  ( ( S  e.  Haus  /\  (
( 2nd `  x
)  e.  U. S  /\  ( 2nd `  y
)  e.  U. S  /\  ( 2nd `  x
)  =/=  ( 2nd `  y ) ) )  ->  E. u  e.  S  E. v  e.  S  ( ( 2nd `  x
)  e.  u  /\  ( 2nd `  y )  e.  v  /\  (
u  i^i  v )  =  (/) ) )
8176, 77, 78, 79, 80syl13anc 1328 . . . . . . . . 9  |-  ( ( ( ( R  e. 
Haus  /\  S  e.  Haus )  /\  ( x  e.  ( U. R  X.  U. S )  /\  y  e.  ( U. R  X.  U. S ) ) )  /\  ( 2nd `  x
)  =/=  ( 2nd `  y ) )  ->  E. u  e.  S  E. v  e.  S  ( ( 2nd `  x
)  e.  u  /\  ( 2nd `  y )  e.  v  /\  (
u  i^i  v )  =  (/) ) )
8227ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( ( ( R  e.  Haus  /\  S  e. 
Haus )  /\  (
x  e.  ( U. R  X.  U. S )  /\  y  e.  ( U. R  X.  U. S ) ) )  /\  ( 2nd `  x
)  =/=  ( 2nd `  y ) )  /\  ( ( u  e.  S  /\  v  e.  S )  /\  (
( 2nd `  x
)  e.  u  /\  ( 2nd `  y )  e.  v  /\  (
u  i^i  v )  =  (/) ) ) )  ->  R  e.  Top )
832ad4antlr 769 . . . . . . . . . . . . 13  |-  ( ( ( ( ( R  e.  Haus  /\  S  e. 
Haus )  /\  (
x  e.  ( U. R  X.  U. S )  /\  y  e.  ( U. R  X.  U. S ) ) )  /\  ( 2nd `  x
)  =/=  ( 2nd `  y ) )  /\  ( ( u  e.  S  /\  v  e.  S )  /\  (
( 2nd `  x
)  e.  u  /\  ( 2nd `  y )  e.  v  /\  (
u  i^i  v )  =  (/) ) ) )  ->  S  e.  Top )
845topopn 20711 . . . . . . . . . . . . . 14  |-  ( R  e.  Top  ->  U. R  e.  R )
8582, 84syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ( ( R  e.  Haus  /\  S  e. 
Haus )  /\  (
x  e.  ( U. R  X.  U. S )  /\  y  e.  ( U. R  X.  U. S ) ) )  /\  ( 2nd `  x
)  =/=  ( 2nd `  y ) )  /\  ( ( u  e.  S  /\  v  e.  S )  /\  (
( 2nd `  x
)  e.  u  /\  ( 2nd `  y )  e.  v  /\  (
u  i^i  v )  =  (/) ) ) )  ->  U. R  e.  R
)
86 simprll 802 . . . . . . . . . . . . 13  |-  ( ( ( ( ( R  e.  Haus  /\  S  e. 
Haus )  /\  (
x  e.  ( U. R  X.  U. S )  /\  y  e.  ( U. R  X.  U. S ) ) )  /\  ( 2nd `  x
)  =/=  ( 2nd `  y ) )  /\  ( ( u  e.  S  /\  v  e.  S )  /\  (
( 2nd `  x
)  e.  u  /\  ( 2nd `  y )  e.  v  /\  (
u  i^i  v )  =  (/) ) ) )  ->  u  e.  S
)
87 txopn 21405 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  Top  /\  S  e.  Top )  /\  ( U. R  e.  R  /\  u  e.  S ) )  -> 
( U. R  X.  u )  e.  ( R  tX  S ) )
8882, 83, 85, 86, 87syl22anc 1327 . . . . . . . . . . . 12  |-  ( ( ( ( ( R  e.  Haus  /\  S  e. 
Haus )  /\  (
x  e.  ( U. R  X.  U. S )  /\  y  e.  ( U. R  X.  U. S ) ) )  /\  ( 2nd `  x
)  =/=  ( 2nd `  y ) )  /\  ( ( u  e.  S  /\  v  e.  S )  /\  (
( 2nd `  x
)  e.  u  /\  ( 2nd `  y )  e.  v  /\  (
u  i^i  v )  =  (/) ) ) )  ->  ( U. R  X.  u )  e.  ( R  tX  S ) )
89 simprlr 803 . . . . . . . . . . . . 13  |-  ( ( ( ( ( R  e.  Haus  /\  S  e. 
Haus )  /\  (
x  e.  ( U. R  X.  U. S )  /\  y  e.  ( U. R  X.  U. S ) ) )  /\  ( 2nd `  x
)  =/=  ( 2nd `  y ) )  /\  ( ( u  e.  S  /\  v  e.  S )  /\  (
( 2nd `  x
)  e.  u  /\  ( 2nd `  y )  e.  v  /\  (
u  i^i  v )  =  (/) ) ) )  ->  v  e.  S
)
90 txopn 21405 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  Top  /\  S  e.  Top )  /\  ( U. R  e.  R  /\  v  e.  S ) )  -> 
( U. R  X.  v )  e.  ( R  tX  S ) )
9182, 83, 85, 89, 90syl22anc 1327 . . . . . . . . . . . 12  |-  ( ( ( ( ( R  e.  Haus  /\  S  e. 
Haus )  /\  (
x  e.  ( U. R  X.  U. S )  /\  y  e.  ( U. R  X.  U. S ) ) )  /\  ( 2nd `  x
)  =/=  ( 2nd `  y ) )  /\  ( ( u  e.  S  /\  v  e.  S )  /\  (
( 2nd `  x
)  e.  u  /\  ( 2nd `  y )  e.  v  /\  (
u  i^i  v )  =  (/) ) ) )  ->  ( U. R  X.  v )  e.  ( R  tX  S ) )
9239ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( ( ( R  e.  Haus  /\  S  e. 
Haus )  /\  (
x  e.  ( U. R  X.  U. S )  /\  y  e.  ( U. R  X.  U. S ) ) )  /\  ( 2nd `  x
)  =/=  ( 2nd `  y ) )  /\  ( ( u  e.  S  /\  v  e.  S )  /\  (
( 2nd `  x
)  e.  u  /\  ( 2nd `  y )  e.  v  /\  (
u  i^i  v )  =  (/) ) ) )  ->  x  =  <. ( 1st `  x ) ,  ( 2nd `  x
) >. )
9319ad2antrr 762 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( R  e.  Haus  /\  S  e. 
Haus )  /\  (
x  e.  ( U. R  X.  U. S )  /\  y  e.  ( U. R  X.  U. S ) ) )  /\  ( 2nd `  x
)  =/=  ( 2nd `  y ) )  /\  ( ( u  e.  S  /\  v  e.  S )  /\  (
( 2nd `  x
)  e.  u  /\  ( 2nd `  y )  e.  v  /\  (
u  i^i  v )  =  (/) ) ) )  ->  ( 1st `  x
)  e.  U. R
)
94 simprr1 1109 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( R  e.  Haus  /\  S  e. 
Haus )  /\  (
x  e.  ( U. R  X.  U. S )  /\  y  e.  ( U. R  X.  U. S ) ) )  /\  ( 2nd `  x
)  =/=  ( 2nd `  y ) )  /\  ( ( u  e.  S  /\  v  e.  S )  /\  (
( 2nd `  x
)  e.  u  /\  ( 2nd `  y )  e.  v  /\  (
u  i^i  v )  =  (/) ) ) )  ->  ( 2nd `  x
)  e.  u )
9593, 94jca 554 . . . . . . . . . . . . 13  |-  ( ( ( ( ( R  e.  Haus  /\  S  e. 
Haus )  /\  (
x  e.  ( U. R  X.  U. S )  /\  y  e.  ( U. R  X.  U. S ) ) )  /\  ( 2nd `  x
)  =/=  ( 2nd `  y ) )  /\  ( ( u  e.  S  /\  v  e.  S )  /\  (
( 2nd `  x
)  e.  u  /\  ( 2nd `  y )  e.  v  /\  (
u  i^i  v )  =  (/) ) ) )  ->  ( ( 1st `  x )  e.  U. R  /\  ( 2nd `  x
)  e.  u ) )
96 elxp6 7200 . . . . . . . . . . . . 13  |-  ( x  e.  ( U. R  X.  u )  <->  ( x  =  <. ( 1st `  x
) ,  ( 2nd `  x ) >.  /\  (
( 1st `  x
)  e.  U. R  /\  ( 2nd `  x
)  e.  u ) ) )
9792, 95, 96sylanbrc 698 . . . . . . . . . . . 12  |-  ( ( ( ( ( R  e.  Haus  /\  S  e. 
Haus )  /\  (
x  e.  ( U. R  X.  U. S )  /\  y  e.  ( U. R  X.  U. S ) ) )  /\  ( 2nd `  x
)  =/=  ( 2nd `  y ) )  /\  ( ( u  e.  S  /\  v  e.  S )  /\  (
( 2nd `  x
)  e.  u  /\  ( 2nd `  y )  e.  v  /\  (
u  i^i  v )  =  (/) ) ) )  ->  x  e.  ( U. R  X.  u
) )
9849ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( ( ( R  e.  Haus  /\  S  e. 
Haus )  /\  (
x  e.  ( U. R  X.  U. S )  /\  y  e.  ( U. R  X.  U. S ) ) )  /\  ( 2nd `  x
)  =/=  ( 2nd `  y ) )  /\  ( ( u  e.  S  /\  v  e.  S )  /\  (
( 2nd `  x
)  e.  u  /\  ( 2nd `  y )  e.  v  /\  (
u  i^i  v )  =  (/) ) ) )  ->  y  =  <. ( 1st `  y ) ,  ( 2nd `  y
) >. )
9922ad2antrr 762 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( R  e.  Haus  /\  S  e. 
Haus )  /\  (
x  e.  ( U. R  X.  U. S )  /\  y  e.  ( U. R  X.  U. S ) ) )  /\  ( 2nd `  x
)  =/=  ( 2nd `  y ) )  /\  ( ( u  e.  S  /\  v  e.  S )  /\  (
( 2nd `  x
)  e.  u  /\  ( 2nd `  y )  e.  v  /\  (
u  i^i  v )  =  (/) ) ) )  ->  ( 1st `  y
)  e.  U. R
)
100 simprr2 1110 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( R  e.  Haus  /\  S  e. 
Haus )  /\  (
x  e.  ( U. R  X.  U. S )  /\  y  e.  ( U. R  X.  U. S ) ) )  /\  ( 2nd `  x
)  =/=  ( 2nd `  y ) )  /\  ( ( u  e.  S  /\  v  e.  S )  /\  (
( 2nd `  x
)  e.  u  /\  ( 2nd `  y )  e.  v  /\  (
u  i^i  v )  =  (/) ) ) )  ->  ( 2nd `  y
)  e.  v )
10199, 100jca 554 . . . . . . . . . . . . 13  |-  ( ( ( ( ( R  e.  Haus  /\  S  e. 
Haus )  /\  (
x  e.  ( U. R  X.  U. S )  /\  y  e.  ( U. R  X.  U. S ) ) )  /\  ( 2nd `  x
)  =/=  ( 2nd `  y ) )  /\  ( ( u  e.  S  /\  v  e.  S )  /\  (
( 2nd `  x
)  e.  u  /\  ( 2nd `  y )  e.  v  /\  (
u  i^i  v )  =  (/) ) ) )  ->  ( ( 1st `  y )  e.  U. R  /\  ( 2nd `  y
)  e.  v ) )
102 elxp6 7200 . . . . . . . . . . . . 13  |-  ( y  e.  ( U. R  X.  v )  <->  ( y  =  <. ( 1st `  y
) ,  ( 2nd `  y ) >.  /\  (
( 1st `  y
)  e.  U. R  /\  ( 2nd `  y
)  e.  v ) ) )
10398, 101, 102sylanbrc 698 . . . . . . . . . . . 12  |-  ( ( ( ( ( R  e.  Haus  /\  S  e. 
Haus )  /\  (
x  e.  ( U. R  X.  U. S )  /\  y  e.  ( U. R  X.  U. S ) ) )  /\  ( 2nd `  x
)  =/=  ( 2nd `  y ) )  /\  ( ( u  e.  S  /\  v  e.  S )  /\  (
( 2nd `  x
)  e.  u  /\  ( 2nd `  y )  e.  v  /\  (
u  i^i  v )  =  (/) ) ) )  ->  y  e.  ( U. R  X.  v
) )
104 simprr3 1111 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( R  e.  Haus  /\  S  e. 
Haus )  /\  (
x  e.  ( U. R  X.  U. S )  /\  y  e.  ( U. R  X.  U. S ) ) )  /\  ( 2nd `  x
)  =/=  ( 2nd `  y ) )  /\  ( ( u  e.  S  /\  v  e.  S )  /\  (
( 2nd `  x
)  e.  u  /\  ( 2nd `  y )  e.  v  /\  (
u  i^i  v )  =  (/) ) ) )  ->  ( u  i^i  v )  =  (/) )
105104xpeq2d 5139 . . . . . . . . . . . . 13  |-  ( ( ( ( ( R  e.  Haus  /\  S  e. 
Haus )  /\  (
x  e.  ( U. R  X.  U. S )  /\  y  e.  ( U. R  X.  U. S ) ) )  /\  ( 2nd `  x
)  =/=  ( 2nd `  y ) )  /\  ( ( u  e.  S  /\  v  e.  S )  /\  (
( 2nd `  x
)  e.  u  /\  ( 2nd `  y )  e.  v  /\  (
u  i^i  v )  =  (/) ) ) )  ->  ( U. R  X.  ( u  i^i  v
) )  =  ( U. R  X.  (/) ) )
106 xpindi 5255 . . . . . . . . . . . . 13  |-  ( U. R  X.  ( u  i^i  v ) )  =  ( ( U. R  X.  u )  i^i  ( U. R  X.  v
) )
107 xp0 5552 . . . . . . . . . . . . 13  |-  ( U. R  X.  (/) )  =  (/)
108105, 106, 1073eqtr3g 2679 . . . . . . . . . . . 12  |-  ( ( ( ( ( R  e.  Haus  /\  S  e. 
Haus )  /\  (
x  e.  ( U. R  X.  U. S )  /\  y  e.  ( U. R  X.  U. S ) ) )  /\  ( 2nd `  x
)  =/=  ( 2nd `  y ) )  /\  ( ( u  e.  S  /\  v  e.  S )  /\  (
( 2nd `  x
)  e.  u  /\  ( 2nd `  y )  e.  v  /\  (
u  i^i  v )  =  (/) ) ) )  ->  ( ( U. R  X.  u )  i^i  ( U. R  X.  v ) )  =  (/) )
109 eleq2 2690 . . . . . . . . . . . . . 14  |-  ( z  =  ( U. R  X.  u )  ->  (
x  e.  z  <->  x  e.  ( U. R  X.  u
) ) )
110 ineq1 3807 . . . . . . . . . . . . . . 15  |-  ( z  =  ( U. R  X.  u )  ->  (
z  i^i  w )  =  ( ( U. R  X.  u )  i^i  w ) )
111110eqeq1d 2624 . . . . . . . . . . . . . 14  |-  ( z  =  ( U. R  X.  u )  ->  (
( z  i^i  w
)  =  (/)  <->  ( ( U. R  X.  u
)  i^i  w )  =  (/) ) )
112109, 1113anbi13d 1401 . . . . . . . . . . . . 13  |-  ( z  =  ( U. R  X.  u )  ->  (
( x  e.  z  /\  y  e.  w  /\  ( z  i^i  w
)  =  (/) )  <->  ( x  e.  ( U. R  X.  u )  /\  y  e.  w  /\  (
( U. R  X.  u )  i^i  w
)  =  (/) ) ) )
113 eleq2 2690 . . . . . . . . . . . . . 14  |-  ( w  =  ( U. R  X.  v )  ->  (
y  e.  w  <->  y  e.  ( U. R  X.  v
) ) )
114 ineq2 3808 . . . . . . . . . . . . . . 15  |-  ( w  =  ( U. R  X.  v )  ->  (
( U. R  X.  u )  i^i  w
)  =  ( ( U. R  X.  u
)  i^i  ( U. R  X.  v ) ) )
115114eqeq1d 2624 . . . . . . . . . . . . . 14  |-  ( w  =  ( U. R  X.  v )  ->  (
( ( U. R  X.  u )  i^i  w
)  =  (/)  <->  ( ( U. R  X.  u
)  i^i  ( U. R  X.  v ) )  =  (/) ) )
116113, 1153anbi23d 1402 . . . . . . . . . . . . 13  |-  ( w  =  ( U. R  X.  v )  ->  (
( x  e.  ( U. R  X.  u
)  /\  y  e.  w  /\  ( ( U. R  X.  u )  i^i  w )  =  (/) ) 
<->  ( x  e.  ( U. R  X.  u
)  /\  y  e.  ( U. R  X.  v
)  /\  ( ( U. R  X.  u
)  i^i  ( U. R  X.  v ) )  =  (/) ) ) )
117112, 116rspc2ev 3324 . . . . . . . . . . . 12  |-  ( ( ( U. R  X.  u )  e.  ( R  tX  S )  /\  ( U. R  X.  v )  e.  ( R  tX  S )  /\  ( x  e.  ( U. R  X.  u )  /\  y  e.  ( U. R  X.  v )  /\  (
( U. R  X.  u )  i^i  ( U. R  X.  v
) )  =  (/) ) )  ->  E. z  e.  ( R  tX  S
) E. w  e.  ( R  tX  S
) ( x  e.  z  /\  y  e.  w  /\  ( z  i^i  w )  =  (/) ) )
11888, 91, 97, 103, 108, 117syl113anc 1338 . . . . . . . . . . 11  |-  ( ( ( ( ( R  e.  Haus  /\  S  e. 
Haus )  /\  (
x  e.  ( U. R  X.  U. S )  /\  y  e.  ( U. R  X.  U. S ) ) )  /\  ( 2nd `  x
)  =/=  ( 2nd `  y ) )  /\  ( ( u  e.  S  /\  v  e.  S )  /\  (
( 2nd `  x
)  e.  u  /\  ( 2nd `  y )  e.  v  /\  (
u  i^i  v )  =  (/) ) ) )  ->  E. z  e.  ( R  tX  S ) E. w  e.  ( R  tX  S ) ( x  e.  z  /\  y  e.  w  /\  ( z  i^i  w
)  =  (/) ) )
119118expr 643 . . . . . . . . . 10  |-  ( ( ( ( ( R  e.  Haus  /\  S  e. 
Haus )  /\  (
x  e.  ( U. R  X.  U. S )  /\  y  e.  ( U. R  X.  U. S ) ) )  /\  ( 2nd `  x
)  =/=  ( 2nd `  y ) )  /\  ( u  e.  S  /\  v  e.  S
) )  ->  (
( ( 2nd `  x
)  e.  u  /\  ( 2nd `  y )  e.  v  /\  (
u  i^i  v )  =  (/) )  ->  E. z  e.  ( R  tX  S
) E. w  e.  ( R  tX  S
) ( x  e.  z  /\  y  e.  w  /\  ( z  i^i  w )  =  (/) ) ) )
120119rexlimdvva 3038 . . . . . . . . 9  |-  ( ( ( ( R  e. 
Haus  /\  S  e.  Haus )  /\  ( x  e.  ( U. R  X.  U. S )  /\  y  e.  ( U. R  X.  U. S ) ) )  /\  ( 2nd `  x
)  =/=  ( 2nd `  y ) )  -> 
( E. u  e.  S  E. v  e.  S  ( ( 2nd `  x )  e.  u  /\  ( 2nd `  y
)  e.  v  /\  ( u  i^i  v
)  =  (/) )  ->  E. z  e.  ( R  tX  S ) E. w  e.  ( R 
tX  S ) ( x  e.  z  /\  y  e.  w  /\  ( z  i^i  w
)  =  (/) ) ) )
12181, 120mpd 15 . . . . . . . 8  |-  ( ( ( ( R  e. 
Haus  /\  S  e.  Haus )  /\  ( x  e.  ( U. R  X.  U. S )  /\  y  e.  ( U. R  X.  U. S ) ) )  /\  ( 2nd `  x
)  =/=  ( 2nd `  y ) )  ->  E. z  e.  ( R  tX  S ) E. w  e.  ( R 
tX  S ) ( x  e.  z  /\  y  e.  w  /\  ( z  i^i  w
)  =  (/) ) )
12275, 121jaodan 826 . . . . . . 7  |-  ( ( ( ( R  e. 
Haus  /\  S  e.  Haus )  /\  ( x  e.  ( U. R  X.  U. S )  /\  y  e.  ( U. R  X.  U. S ) ) )  /\  ( ( 1st `  x )  =/=  ( 1st `  y )  \/  ( 2nd `  x
)  =/=  ( 2nd `  y ) ) )  ->  E. z  e.  ( R  tX  S ) E. w  e.  ( R  tX  S ) ( x  e.  z  /\  y  e.  w  /\  ( z  i^i  w
)  =  (/) ) )
123122ex 450 . . . . . 6  |-  ( ( ( R  e.  Haus  /\  S  e.  Haus )  /\  ( x  e.  ( U. R  X.  U. S )  /\  y  e.  ( U. R  X.  U. S ) ) )  ->  ( ( ( 1st `  x )  =/=  ( 1st `  y
)  \/  ( 2nd `  x )  =/=  ( 2nd `  y ) )  ->  E. z  e.  ( R  tX  S ) E. w  e.  ( R  tX  S ) ( x  e.  z  /\  y  e.  w  /\  ( z  i^i  w
)  =  (/) ) ) )
12416, 123sylbird 250 . . . . 5  |-  ( ( ( R  e.  Haus  /\  S  e.  Haus )  /\  ( x  e.  ( U. R  X.  U. S )  /\  y  e.  ( U. R  X.  U. S ) ) )  ->  ( x  =/=  y  ->  E. z  e.  ( R  tX  S
) E. w  e.  ( R  tX  S
) ( x  e.  z  /\  y  e.  w  /\  ( z  i^i  w )  =  (/) ) ) )
125124ex 450 . . . 4  |-  ( ( R  e.  Haus  /\  S  e.  Haus )  ->  (
( x  e.  ( U. R  X.  U. S )  /\  y  e.  ( U. R  X.  U. S ) )  -> 
( x  =/=  y  ->  E. z  e.  ( R  tX  S ) E. w  e.  ( R  tX  S ) ( x  e.  z  /\  y  e.  w  /\  ( z  i^i  w
)  =  (/) ) ) ) )
12611, 125sylbird 250 . . 3  |-  ( ( R  e.  Haus  /\  S  e.  Haus )  ->  (
( x  e.  U. ( R  tX  S )  /\  y  e.  U. ( R  tX  S ) )  ->  ( x  =/=  y  ->  E. z  e.  ( R  tX  S
) E. w  e.  ( R  tX  S
) ( x  e.  z  /\  y  e.  w  /\  ( z  i^i  w )  =  (/) ) ) ) )
127126ralrimivv 2970 . 2  |-  ( ( R  e.  Haus  /\  S  e.  Haus )  ->  A. x  e.  U. ( R  tX  S ) A. y  e.  U. ( R  tX  S ) ( x  =/=  y  ->  E. z  e.  ( R  tX  S
) E. w  e.  ( R  tX  S
) ( x  e.  z  /\  y  e.  w  /\  ( z  i^i  w )  =  (/) ) ) )
128 eqid 2622 . . 3  |-  U. ( R  tX  S )  = 
U. ( R  tX  S )
129128ishaus 21126 . 2  |-  ( ( R  tX  S )  e.  Haus  <->  ( ( R 
tX  S )  e. 
Top  /\  A. x  e.  U. ( R  tX  S ) A. y  e.  U. ( R  tX  S ) ( x  =/=  y  ->  E. z  e.  ( R  tX  S
) E. w  e.  ( R  tX  S
) ( x  e.  z  /\  y  e.  w  /\  ( z  i^i  w )  =  (/) ) ) ) )
1304, 127, 129sylanbrc 698 1  |-  ( ( R  e.  Haus  /\  S  e.  Haus )  ->  ( R  tX  S )  e. 
Haus )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913    i^i cin 3573   (/)c0 3915   <.cop 4183   U.cuni 4436    X. cxp 5112   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167   Topctop 20698   Hauscha 21112    tX ctx 21363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-topgen 16104  df-top 20699  df-topon 20716  df-bases 20750  df-haus 21119  df-tx 21365
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator