MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pthaus Structured version   Visualization version   Unicode version

Theorem pthaus 21441
Description: The product of a collection of Hausdorff spaces is Hausdorff. (Contributed by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
pthaus  |-  ( ( A  e.  V  /\  F : A --> Haus )  ->  ( Xt_ `  F
)  e.  Haus )

Proof of Theorem pthaus
Dummy variables  k  m  n  x  y 
z  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 haustop 21135 . . . . 5  |-  ( x  e.  Haus  ->  x  e. 
Top )
21ssriv 3607 . . . 4  |-  Haus  C_  Top
3 fss 6056 . . . 4  |-  ( ( F : A --> Haus  /\  Haus  C_ 
Top )  ->  F : A --> Top )
42, 3mpan2 707 . . 3  |-  ( F : A --> Haus  ->  F : A --> Top )
5 pttop 21385 . . 3  |-  ( ( A  e.  V  /\  F : A --> Top )  ->  ( Xt_ `  F
)  e.  Top )
64, 5sylan2 491 . 2  |-  ( ( A  e.  V  /\  F : A --> Haus )  ->  ( Xt_ `  F
)  e.  Top )
7 simprl 794 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  F : A --> Haus )  /\  ( x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  ->  x  e.  U. ( Xt_ `  F
) )
8 eqid 2622 . . . . . . . . . . 11  |-  ( Xt_ `  F )  =  (
Xt_ `  F )
98ptuni 21397 . . . . . . . . . 10  |-  ( ( A  e.  V  /\  F : A --> Top )  -> 
X_ k  e.  A  U. ( F `  k
)  =  U. ( Xt_ `  F ) )
104, 9sylan2 491 . . . . . . . . 9  |-  ( ( A  e.  V  /\  F : A --> Haus )  -> 
X_ k  e.  A  U. ( F `  k
)  =  U. ( Xt_ `  F ) )
1110adantr 481 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  F : A --> Haus )  /\  ( x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  ->  X_ k  e.  A  U. ( F `  k )  =  U. ( Xt_ `  F
) )
127, 11eleqtrrd 2704 . . . . . . 7  |-  ( ( ( A  e.  V  /\  F : A --> Haus )  /\  ( x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  ->  x  e.  X_ k  e.  A  U. ( F `  k
) )
13 ixpfn 7914 . . . . . . 7  |-  ( x  e.  X_ k  e.  A  U. ( F `  k
)  ->  x  Fn  A )
1412, 13syl 17 . . . . . 6  |-  ( ( ( A  e.  V  /\  F : A --> Haus )  /\  ( x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  ->  x  Fn  A )
15 simprr 796 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  F : A --> Haus )  /\  ( x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  ->  y  e.  U. ( Xt_ `  F
) )
1615, 11eleqtrrd 2704 . . . . . . 7  |-  ( ( ( A  e.  V  /\  F : A --> Haus )  /\  ( x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  ->  y  e.  X_ k  e.  A  U. ( F `  k
) )
17 ixpfn 7914 . . . . . . 7  |-  ( y  e.  X_ k  e.  A  U. ( F `  k
)  ->  y  Fn  A )
1816, 17syl 17 . . . . . 6  |-  ( ( ( A  e.  V  /\  F : A --> Haus )  /\  ( x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  ->  y  Fn  A )
19 eqfnfv 6311 . . . . . 6  |-  ( ( x  Fn  A  /\  y  Fn  A )  ->  ( x  =  y  <->  A. k  e.  A  ( x `  k
)  =  ( y `
 k ) ) )
2014, 18, 19syl2anc 693 . . . . 5  |-  ( ( ( A  e.  V  /\  F : A --> Haus )  /\  ( x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  ->  (
x  =  y  <->  A. k  e.  A  ( x `  k )  =  ( y `  k ) ) )
2120necon3abid 2830 . . . 4  |-  ( ( ( A  e.  V  /\  F : A --> Haus )  /\  ( x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  ->  (
x  =/=  y  <->  -.  A. k  e.  A  ( x `  k )  =  ( y `  k ) ) )
22 rexnal 2995 . . . . 5  |-  ( E. k  e.  A  -.  ( x `  k
)  =  ( y `
 k )  <->  -.  A. k  e.  A  ( x `  k )  =  ( y `  k ) )
23 df-ne 2795 . . . . . . 7  |-  ( ( x `  k )  =/=  ( y `  k )  <->  -.  (
x `  k )  =  ( y `  k ) )
24 simpllr 799 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  V  /\  F : A
--> Haus )  /\  (
x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  /\  ( k  e.  A  /\  (
x `  k )  =/=  ( y `  k
) ) )  ->  F : A --> Haus )
25 simprl 794 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  V  /\  F : A
--> Haus )  /\  (
x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  /\  ( k  e.  A  /\  (
x `  k )  =/=  ( y `  k
) ) )  -> 
k  e.  A )
2624, 25ffvelrnd 6360 . . . . . . . . . 10  |-  ( ( ( ( A  e.  V  /\  F : A
--> Haus )  /\  (
x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  /\  ( k  e.  A  /\  (
x `  k )  =/=  ( y `  k
) ) )  -> 
( F `  k
)  e.  Haus )
27 vex 3203 . . . . . . . . . . . . . . 15  |-  x  e. 
_V
2827elixp 7915 . . . . . . . . . . . . . 14  |-  ( x  e.  X_ k  e.  A  U. ( F `  k
)  <->  ( x  Fn  A  /\  A. k  e.  A  ( x `  k )  e.  U. ( F `  k ) ) )
2928simprbi 480 . . . . . . . . . . . . 13  |-  ( x  e.  X_ k  e.  A  U. ( F `  k
)  ->  A. k  e.  A  ( x `  k )  e.  U. ( F `  k ) )
3012, 29syl 17 . . . . . . . . . . . 12  |-  ( ( ( A  e.  V  /\  F : A --> Haus )  /\  ( x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  ->  A. k  e.  A  ( x `  k )  e.  U. ( F `  k ) )
3130r19.21bi 2932 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  V  /\  F : A
--> Haus )  /\  (
x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  /\  k  e.  A )  ->  (
x `  k )  e.  U. ( F `  k ) )
3231adantrr 753 . . . . . . . . . 10  |-  ( ( ( ( A  e.  V  /\  F : A
--> Haus )  /\  (
x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  /\  ( k  e.  A  /\  (
x `  k )  =/=  ( y `  k
) ) )  -> 
( x `  k
)  e.  U. ( F `  k )
)
33 vex 3203 . . . . . . . . . . . . . . 15  |-  y  e. 
_V
3433elixp 7915 . . . . . . . . . . . . . 14  |-  ( y  e.  X_ k  e.  A  U. ( F `  k
)  <->  ( y  Fn  A  /\  A. k  e.  A  ( y `  k )  e.  U. ( F `  k ) ) )
3534simprbi 480 . . . . . . . . . . . . 13  |-  ( y  e.  X_ k  e.  A  U. ( F `  k
)  ->  A. k  e.  A  ( y `  k )  e.  U. ( F `  k ) )
3616, 35syl 17 . . . . . . . . . . . 12  |-  ( ( ( A  e.  V  /\  F : A --> Haus )  /\  ( x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  ->  A. k  e.  A  ( y `  k )  e.  U. ( F `  k ) )
3736r19.21bi 2932 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  V  /\  F : A
--> Haus )  /\  (
x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  /\  k  e.  A )  ->  (
y `  k )  e.  U. ( F `  k ) )
3837adantrr 753 . . . . . . . . . 10  |-  ( ( ( ( A  e.  V  /\  F : A
--> Haus )  /\  (
x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  /\  ( k  e.  A  /\  (
x `  k )  =/=  ( y `  k
) ) )  -> 
( y `  k
)  e.  U. ( F `  k )
)
39 simprr 796 . . . . . . . . . 10  |-  ( ( ( ( A  e.  V  /\  F : A
--> Haus )  /\  (
x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  /\  ( k  e.  A  /\  (
x `  k )  =/=  ( y `  k
) ) )  -> 
( x `  k
)  =/=  ( y `
 k ) )
40 eqid 2622 . . . . . . . . . . 11  |-  U. ( F `  k )  =  U. ( F `  k )
4140hausnei 21132 . . . . . . . . . 10  |-  ( ( ( F `  k
)  e.  Haus  /\  (
( x `  k
)  e.  U. ( F `  k )  /\  ( y `  k
)  e.  U. ( F `  k )  /\  ( x `  k
)  =/=  ( y `
 k ) ) )  ->  E. m  e.  ( F `  k
) E. n  e.  ( F `  k
) ( ( x `
 k )  e.  m  /\  ( y `
 k )  e.  n  /\  ( m  i^i  n )  =  (/) ) )
4226, 32, 38, 39, 41syl13anc 1328 . . . . . . . . 9  |-  ( ( ( ( A  e.  V  /\  F : A
--> Haus )  /\  (
x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  /\  ( k  e.  A  /\  (
x `  k )  =/=  ( y `  k
) ) )  ->  E. m  e.  ( F `  k ) E. n  e.  ( F `  k )
( ( x `  k )  e.  m  /\  ( y `  k
)  e.  n  /\  ( m  i^i  n
)  =  (/) ) )
43 simp-4l 806 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  e.  V  /\  F : A --> Haus )  /\  (
x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  /\  ( k  e.  A  /\  (
x `  k )  =/=  ( y `  k
) ) )  /\  ( ( m  e.  ( F `  k
)  /\  n  e.  ( F `  k ) )  /\  ( ( x `  k )  e.  m  /\  (
y `  k )  e.  n  /\  (
m  i^i  n )  =  (/) ) ) )  ->  A  e.  V
)
444ad4antlr 769 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  e.  V  /\  F : A --> Haus )  /\  (
x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  /\  ( k  e.  A  /\  (
x `  k )  =/=  ( y `  k
) ) )  /\  ( ( m  e.  ( F `  k
)  /\  n  e.  ( F `  k ) )  /\  ( ( x `  k )  e.  m  /\  (
y `  k )  e.  n  /\  (
m  i^i  n )  =  (/) ) ) )  ->  F : A --> Top )
4525adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  e.  V  /\  F : A --> Haus )  /\  (
x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  /\  ( k  e.  A  /\  (
x `  k )  =/=  ( y `  k
) ) )  /\  ( ( m  e.  ( F `  k
)  /\  n  e.  ( F `  k ) )  /\  ( ( x `  k )  e.  m  /\  (
y `  k )  e.  n  /\  (
m  i^i  n )  =  (/) ) ) )  ->  k  e.  A
)
46 eqid 2622 . . . . . . . . . . . . . . 15  |-  U. ( Xt_ `  F )  = 
U. ( Xt_ `  F
)
4746, 8ptpjcn 21414 . . . . . . . . . . . . . 14  |-  ( ( A  e.  V  /\  F : A --> Top  /\  k  e.  A )  ->  ( z  e.  U. ( Xt_ `  F ) 
|->  ( z `  k
) )  e.  ( ( Xt_ `  F
)  Cn  ( F `
 k ) ) )
4843, 44, 45, 47syl3anc 1326 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  V  /\  F : A --> Haus )  /\  (
x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  /\  ( k  e.  A  /\  (
x `  k )  =/=  ( y `  k
) ) )  /\  ( ( m  e.  ( F `  k
)  /\  n  e.  ( F `  k ) )  /\  ( ( x `  k )  e.  m  /\  (
y `  k )  e.  n  /\  (
m  i^i  n )  =  (/) ) ) )  ->  ( z  e. 
U. ( Xt_ `  F
)  |->  ( z `  k ) )  e.  ( ( Xt_ `  F
)  Cn  ( F `
 k ) ) )
49 simprll 802 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  V  /\  F : A --> Haus )  /\  (
x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  /\  ( k  e.  A  /\  (
x `  k )  =/=  ( y `  k
) ) )  /\  ( ( m  e.  ( F `  k
)  /\  n  e.  ( F `  k ) )  /\  ( ( x `  k )  e.  m  /\  (
y `  k )  e.  n  /\  (
m  i^i  n )  =  (/) ) ) )  ->  m  e.  ( F `  k ) )
50 eqid 2622 . . . . . . . . . . . . . . 15  |-  ( z  e.  U. ( Xt_ `  F )  |->  ( z `
 k ) )  =  ( z  e. 
U. ( Xt_ `  F
)  |->  ( z `  k ) )
5150mptpreima 5628 . . . . . . . . . . . . . 14  |-  ( `' ( z  e.  U. ( Xt_ `  F ) 
|->  ( z `  k
) ) " m
)  =  { z  e.  U. ( Xt_ `  F )  |  ( z `  k )  e.  m }
52 cnima 21069 . . . . . . . . . . . . . 14  |-  ( ( ( z  e.  U. ( Xt_ `  F ) 
|->  ( z `  k
) )  e.  ( ( Xt_ `  F
)  Cn  ( F `
 k ) )  /\  m  e.  ( F `  k ) )  ->  ( `' ( z  e.  U. ( Xt_ `  F ) 
|->  ( z `  k
) ) " m
)  e.  ( Xt_ `  F ) )
5351, 52syl5eqelr 2706 . . . . . . . . . . . . 13  |-  ( ( ( z  e.  U. ( Xt_ `  F ) 
|->  ( z `  k
) )  e.  ( ( Xt_ `  F
)  Cn  ( F `
 k ) )  /\  m  e.  ( F `  k ) )  ->  { z  e.  U. ( Xt_ `  F
)  |  ( z `
 k )  e.  m }  e.  (
Xt_ `  F )
)
5448, 49, 53syl2anc 693 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  V  /\  F : A --> Haus )  /\  (
x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  /\  ( k  e.  A  /\  (
x `  k )  =/=  ( y `  k
) ) )  /\  ( ( m  e.  ( F `  k
)  /\  n  e.  ( F `  k ) )  /\  ( ( x `  k )  e.  m  /\  (
y `  k )  e.  n  /\  (
m  i^i  n )  =  (/) ) ) )  ->  { z  e. 
U. ( Xt_ `  F
)  |  ( z `
 k )  e.  m }  e.  (
Xt_ `  F )
)
55 simprlr 803 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  V  /\  F : A --> Haus )  /\  (
x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  /\  ( k  e.  A  /\  (
x `  k )  =/=  ( y `  k
) ) )  /\  ( ( m  e.  ( F `  k
)  /\  n  e.  ( F `  k ) )  /\  ( ( x `  k )  e.  m  /\  (
y `  k )  e.  n  /\  (
m  i^i  n )  =  (/) ) ) )  ->  n  e.  ( F `  k ) )
5650mptpreima 5628 . . . . . . . . . . . . . 14  |-  ( `' ( z  e.  U. ( Xt_ `  F ) 
|->  ( z `  k
) ) " n
)  =  { z  e.  U. ( Xt_ `  F )  |  ( z `  k )  e.  n }
57 cnima 21069 . . . . . . . . . . . . . 14  |-  ( ( ( z  e.  U. ( Xt_ `  F ) 
|->  ( z `  k
) )  e.  ( ( Xt_ `  F
)  Cn  ( F `
 k ) )  /\  n  e.  ( F `  k ) )  ->  ( `' ( z  e.  U. ( Xt_ `  F ) 
|->  ( z `  k
) ) " n
)  e.  ( Xt_ `  F ) )
5856, 57syl5eqelr 2706 . . . . . . . . . . . . 13  |-  ( ( ( z  e.  U. ( Xt_ `  F ) 
|->  ( z `  k
) )  e.  ( ( Xt_ `  F
)  Cn  ( F `
 k ) )  /\  n  e.  ( F `  k ) )  ->  { z  e.  U. ( Xt_ `  F
)  |  ( z `
 k )  e.  n }  e.  (
Xt_ `  F )
)
5948, 55, 58syl2anc 693 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  V  /\  F : A --> Haus )  /\  (
x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  /\  ( k  e.  A  /\  (
x `  k )  =/=  ( y `  k
) ) )  /\  ( ( m  e.  ( F `  k
)  /\  n  e.  ( F `  k ) )  /\  ( ( x `  k )  e.  m  /\  (
y `  k )  e.  n  /\  (
m  i^i  n )  =  (/) ) ) )  ->  { z  e. 
U. ( Xt_ `  F
)  |  ( z `
 k )  e.  n }  e.  (
Xt_ `  F )
)
607ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  V  /\  F : A --> Haus )  /\  (
x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  /\  ( k  e.  A  /\  (
x `  k )  =/=  ( y `  k
) ) )  /\  ( ( m  e.  ( F `  k
)  /\  n  e.  ( F `  k ) )  /\  ( ( x `  k )  e.  m  /\  (
y `  k )  e.  n  /\  (
m  i^i  n )  =  (/) ) ) )  ->  x  e.  U. ( Xt_ `  F ) )
61 simprr1 1109 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  V  /\  F : A --> Haus )  /\  (
x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  /\  ( k  e.  A  /\  (
x `  k )  =/=  ( y `  k
) ) )  /\  ( ( m  e.  ( F `  k
)  /\  n  e.  ( F `  k ) )  /\  ( ( x `  k )  e.  m  /\  (
y `  k )  e.  n  /\  (
m  i^i  n )  =  (/) ) ) )  ->  ( x `  k )  e.  m
)
62 fveq1 6190 . . . . . . . . . . . . . . 15  |-  ( z  =  x  ->  (
z `  k )  =  ( x `  k ) )
6362eleq1d 2686 . . . . . . . . . . . . . 14  |-  ( z  =  x  ->  (
( z `  k
)  e.  m  <->  ( x `  k )  e.  m
) )
6463elrab 3363 . . . . . . . . . . . . 13  |-  ( x  e.  { z  e. 
U. ( Xt_ `  F
)  |  ( z `
 k )  e.  m }  <->  ( x  e.  U. ( Xt_ `  F
)  /\  ( x `  k )  e.  m
) )
6560, 61, 64sylanbrc 698 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  V  /\  F : A --> Haus )  /\  (
x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  /\  ( k  e.  A  /\  (
x `  k )  =/=  ( y `  k
) ) )  /\  ( ( m  e.  ( F `  k
)  /\  n  e.  ( F `  k ) )  /\  ( ( x `  k )  e.  m  /\  (
y `  k )  e.  n  /\  (
m  i^i  n )  =  (/) ) ) )  ->  x  e.  {
z  e.  U. ( Xt_ `  F )  |  ( z `  k
)  e.  m }
)
6615ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  V  /\  F : A --> Haus )  /\  (
x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  /\  ( k  e.  A  /\  (
x `  k )  =/=  ( y `  k
) ) )  /\  ( ( m  e.  ( F `  k
)  /\  n  e.  ( F `  k ) )  /\  ( ( x `  k )  e.  m  /\  (
y `  k )  e.  n  /\  (
m  i^i  n )  =  (/) ) ) )  ->  y  e.  U. ( Xt_ `  F ) )
67 simprr2 1110 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  V  /\  F : A --> Haus )  /\  (
x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  /\  ( k  e.  A  /\  (
x `  k )  =/=  ( y `  k
) ) )  /\  ( ( m  e.  ( F `  k
)  /\  n  e.  ( F `  k ) )  /\  ( ( x `  k )  e.  m  /\  (
y `  k )  e.  n  /\  (
m  i^i  n )  =  (/) ) ) )  ->  ( y `  k )  e.  n
)
68 fveq1 6190 . . . . . . . . . . . . . . 15  |-  ( z  =  y  ->  (
z `  k )  =  ( y `  k ) )
6968eleq1d 2686 . . . . . . . . . . . . . 14  |-  ( z  =  y  ->  (
( z `  k
)  e.  n  <->  ( y `  k )  e.  n
) )
7069elrab 3363 . . . . . . . . . . . . 13  |-  ( y  e.  { z  e. 
U. ( Xt_ `  F
)  |  ( z `
 k )  e.  n }  <->  ( y  e.  U. ( Xt_ `  F
)  /\  ( y `  k )  e.  n
) )
7166, 67, 70sylanbrc 698 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  V  /\  F : A --> Haus )  /\  (
x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  /\  ( k  e.  A  /\  (
x `  k )  =/=  ( y `  k
) ) )  /\  ( ( m  e.  ( F `  k
)  /\  n  e.  ( F `  k ) )  /\  ( ( x `  k )  e.  m  /\  (
y `  k )  e.  n  /\  (
m  i^i  n )  =  (/) ) ) )  ->  y  e.  {
z  e.  U. ( Xt_ `  F )  |  ( z `  k
)  e.  n }
)
72 inrab 3899 . . . . . . . . . . . . 13  |-  ( { z  e.  U. ( Xt_ `  F )  |  ( z `  k
)  e.  m }  i^i  { z  e.  U. ( Xt_ `  F )  |  ( z `  k )  e.  n } )  =  {
z  e.  U. ( Xt_ `  F )  |  ( ( z `  k )  e.  m  /\  ( z `  k
)  e.  n ) }
73 simprr3 1111 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A  e.  V  /\  F : A --> Haus )  /\  (
x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  /\  ( k  e.  A  /\  (
x `  k )  =/=  ( y `  k
) ) )  /\  ( ( m  e.  ( F `  k
)  /\  n  e.  ( F `  k ) )  /\  ( ( x `  k )  e.  m  /\  (
y `  k )  e.  n  /\  (
m  i^i  n )  =  (/) ) ) )  ->  ( m  i^i  n )  =  (/) )
74 inelcm 4032 . . . . . . . . . . . . . . . . 17  |-  ( ( ( z `  k
)  e.  m  /\  ( z `  k
)  e.  n )  ->  ( m  i^i  n )  =/=  (/) )
7574necon2bi 2824 . . . . . . . . . . . . . . . 16  |-  ( ( m  i^i  n )  =  (/)  ->  -.  (
( z `  k
)  e.  m  /\  ( z `  k
)  e.  n ) )
7673, 75syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A  e.  V  /\  F : A --> Haus )  /\  (
x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  /\  ( k  e.  A  /\  (
x `  k )  =/=  ( y `  k
) ) )  /\  ( ( m  e.  ( F `  k
)  /\  n  e.  ( F `  k ) )  /\  ( ( x `  k )  e.  m  /\  (
y `  k )  e.  n  /\  (
m  i^i  n )  =  (/) ) ) )  ->  -.  ( (
z `  k )  e.  m  /\  (
z `  k )  e.  n ) )
7776ralrimivw 2967 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  e.  V  /\  F : A --> Haus )  /\  (
x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  /\  ( k  e.  A  /\  (
x `  k )  =/=  ( y `  k
) ) )  /\  ( ( m  e.  ( F `  k
)  /\  n  e.  ( F `  k ) )  /\  ( ( x `  k )  e.  m  /\  (
y `  k )  e.  n  /\  (
m  i^i  n )  =  (/) ) ) )  ->  A. z  e.  U. ( Xt_ `  F )  -.  ( ( z `
 k )  e.  m  /\  ( z `
 k )  e.  n ) )
78 rabeq0 3957 . . . . . . . . . . . . . 14  |-  ( { z  e.  U. ( Xt_ `  F )  |  ( ( z `  k )  e.  m  /\  ( z `  k
)  e.  n ) }  =  (/)  <->  A. z  e.  U. ( Xt_ `  F
)  -.  ( ( z `  k )  e.  m  /\  (
z `  k )  e.  n ) )
7977, 78sylibr 224 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  V  /\  F : A --> Haus )  /\  (
x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  /\  ( k  e.  A  /\  (
x `  k )  =/=  ( y `  k
) ) )  /\  ( ( m  e.  ( F `  k
)  /\  n  e.  ( F `  k ) )  /\  ( ( x `  k )  e.  m  /\  (
y `  k )  e.  n  /\  (
m  i^i  n )  =  (/) ) ) )  ->  { z  e. 
U. ( Xt_ `  F
)  |  ( ( z `  k )  e.  m  /\  (
z `  k )  e.  n ) }  =  (/) )
8072, 79syl5eq 2668 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  V  /\  F : A --> Haus )  /\  (
x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  /\  ( k  e.  A  /\  (
x `  k )  =/=  ( y `  k
) ) )  /\  ( ( m  e.  ( F `  k
)  /\  n  e.  ( F `  k ) )  /\  ( ( x `  k )  e.  m  /\  (
y `  k )  e.  n  /\  (
m  i^i  n )  =  (/) ) ) )  ->  ( { z  e.  U. ( Xt_ `  F )  |  ( z `  k )  e.  m }  i^i  { z  e.  U. ( Xt_ `  F )  |  ( z `  k
)  e.  n }
)  =  (/) )
81 eleq2 2690 . . . . . . . . . . . . . 14  |-  ( u  =  { z  e. 
U. ( Xt_ `  F
)  |  ( z `
 k )  e.  m }  ->  (
x  e.  u  <->  x  e.  { z  e.  U. ( Xt_ `  F )  |  ( z `  k
)  e.  m }
) )
82 ineq1 3807 . . . . . . . . . . . . . . 15  |-  ( u  =  { z  e. 
U. ( Xt_ `  F
)  |  ( z `
 k )  e.  m }  ->  (
u  i^i  v )  =  ( { z  e.  U. ( Xt_ `  F )  |  ( z `  k )  e.  m }  i^i  v ) )
8382eqeq1d 2624 . . . . . . . . . . . . . 14  |-  ( u  =  { z  e. 
U. ( Xt_ `  F
)  |  ( z `
 k )  e.  m }  ->  (
( u  i^i  v
)  =  (/)  <->  ( {
z  e.  U. ( Xt_ `  F )  |  ( z `  k
)  e.  m }  i^i  v )  =  (/) ) )
8481, 833anbi13d 1401 . . . . . . . . . . . . 13  |-  ( u  =  { z  e. 
U. ( Xt_ `  F
)  |  ( z `
 k )  e.  m }  ->  (
( x  e.  u  /\  y  e.  v  /\  ( u  i^i  v
)  =  (/) )  <->  ( x  e.  { z  e.  U. ( Xt_ `  F )  |  ( z `  k )  e.  m }  /\  y  e.  v  /\  ( { z  e.  U. ( Xt_ `  F )  |  ( z `  k )  e.  m }  i^i  v )  =  (/) ) ) )
85 eleq2 2690 . . . . . . . . . . . . . 14  |-  ( v  =  { z  e. 
U. ( Xt_ `  F
)  |  ( z `
 k )  e.  n }  ->  (
y  e.  v  <->  y  e.  { z  e.  U. ( Xt_ `  F )  |  ( z `  k
)  e.  n }
) )
86 ineq2 3808 . . . . . . . . . . . . . . 15  |-  ( v  =  { z  e. 
U. ( Xt_ `  F
)  |  ( z `
 k )  e.  n }  ->  ( { z  e.  U. ( Xt_ `  F )  |  ( z `  k )  e.  m }  i^i  v )  =  ( { z  e. 
U. ( Xt_ `  F
)  |  ( z `
 k )  e.  m }  i^i  {
z  e.  U. ( Xt_ `  F )  |  ( z `  k
)  e.  n }
) )
8786eqeq1d 2624 . . . . . . . . . . . . . 14  |-  ( v  =  { z  e. 
U. ( Xt_ `  F
)  |  ( z `
 k )  e.  n }  ->  (
( { z  e. 
U. ( Xt_ `  F
)  |  ( z `
 k )  e.  m }  i^i  v
)  =  (/)  <->  ( {
z  e.  U. ( Xt_ `  F )  |  ( z `  k
)  e.  m }  i^i  { z  e.  U. ( Xt_ `  F )  |  ( z `  k )  e.  n } )  =  (/) ) )
8885, 873anbi23d 1402 . . . . . . . . . . . . 13  |-  ( v  =  { z  e. 
U. ( Xt_ `  F
)  |  ( z `
 k )  e.  n }  ->  (
( x  e.  {
z  e.  U. ( Xt_ `  F )  |  ( z `  k
)  e.  m }  /\  y  e.  v  /\  ( { z  e. 
U. ( Xt_ `  F
)  |  ( z `
 k )  e.  m }  i^i  v
)  =  (/) )  <->  ( x  e.  { z  e.  U. ( Xt_ `  F )  |  ( z `  k )  e.  m }  /\  y  e.  {
z  e.  U. ( Xt_ `  F )  |  ( z `  k
)  e.  n }  /\  ( { z  e. 
U. ( Xt_ `  F
)  |  ( z `
 k )  e.  m }  i^i  {
z  e.  U. ( Xt_ `  F )  |  ( z `  k
)  e.  n }
)  =  (/) ) ) )
8984, 88rspc2ev 3324 . . . . . . . . . . . 12  |-  ( ( { z  e.  U. ( Xt_ `  F )  |  ( z `  k )  e.  m }  e.  ( Xt_ `  F )  /\  {
z  e.  U. ( Xt_ `  F )  |  ( z `  k
)  e.  n }  e.  ( Xt_ `  F
)  /\  ( x  e.  { z  e.  U. ( Xt_ `  F )  |  ( z `  k )  e.  m }  /\  y  e.  {
z  e.  U. ( Xt_ `  F )  |  ( z `  k
)  e.  n }  /\  ( { z  e. 
U. ( Xt_ `  F
)  |  ( z `
 k )  e.  m }  i^i  {
z  e.  U. ( Xt_ `  F )  |  ( z `  k
)  e.  n }
)  =  (/) ) )  ->  E. u  e.  (
Xt_ `  F ) E. v  e.  ( Xt_ `  F ) ( x  e.  u  /\  y  e.  v  /\  ( u  i^i  v
)  =  (/) ) )
9054, 59, 65, 71, 80, 89syl113anc 1338 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  V  /\  F : A --> Haus )  /\  (
x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  /\  ( k  e.  A  /\  (
x `  k )  =/=  ( y `  k
) ) )  /\  ( ( m  e.  ( F `  k
)  /\  n  e.  ( F `  k ) )  /\  ( ( x `  k )  e.  m  /\  (
y `  k )  e.  n  /\  (
m  i^i  n )  =  (/) ) ) )  ->  E. u  e.  (
Xt_ `  F ) E. v  e.  ( Xt_ `  F ) ( x  e.  u  /\  y  e.  v  /\  ( u  i^i  v
)  =  (/) ) )
9190expr 643 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  V  /\  F : A --> Haus )  /\  (
x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  /\  ( k  e.  A  /\  (
x `  k )  =/=  ( y `  k
) ) )  /\  ( m  e.  ( F `  k )  /\  n  e.  ( F `  k )
) )  ->  (
( ( x `  k )  e.  m  /\  ( y `  k
)  e.  n  /\  ( m  i^i  n
)  =  (/) )  ->  E. u  e.  ( Xt_ `  F ) E. v  e.  ( Xt_ `  F ) ( x  e.  u  /\  y  e.  v  /\  (
u  i^i  v )  =  (/) ) ) )
9291rexlimdvva 3038 . . . . . . . . 9  |-  ( ( ( ( A  e.  V  /\  F : A
--> Haus )  /\  (
x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  /\  ( k  e.  A  /\  (
x `  k )  =/=  ( y `  k
) ) )  -> 
( E. m  e.  ( F `  k
) E. n  e.  ( F `  k
) ( ( x `
 k )  e.  m  /\  ( y `
 k )  e.  n  /\  ( m  i^i  n )  =  (/) )  ->  E. u  e.  ( Xt_ `  F
) E. v  e.  ( Xt_ `  F
) ( x  e.  u  /\  y  e.  v  /\  ( u  i^i  v )  =  (/) ) ) )
9342, 92mpd 15 . . . . . . . 8  |-  ( ( ( ( A  e.  V  /\  F : A
--> Haus )  /\  (
x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  /\  ( k  e.  A  /\  (
x `  k )  =/=  ( y `  k
) ) )  ->  E. u  e.  ( Xt_ `  F ) E. v  e.  ( Xt_ `  F ) ( x  e.  u  /\  y  e.  v  /\  (
u  i^i  v )  =  (/) ) )
9493expr 643 . . . . . . 7  |-  ( ( ( ( A  e.  V  /\  F : A
--> Haus )  /\  (
x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  /\  k  e.  A )  ->  (
( x `  k
)  =/=  ( y `
 k )  ->  E. u  e.  ( Xt_ `  F ) E. v  e.  ( Xt_ `  F ) ( x  e.  u  /\  y  e.  v  /\  (
u  i^i  v )  =  (/) ) ) )
9523, 94syl5bir 233 . . . . . 6  |-  ( ( ( ( A  e.  V  /\  F : A
--> Haus )  /\  (
x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  /\  k  e.  A )  ->  ( -.  ( x `  k
)  =  ( y `
 k )  ->  E. u  e.  ( Xt_ `  F ) E. v  e.  ( Xt_ `  F ) ( x  e.  u  /\  y  e.  v  /\  (
u  i^i  v )  =  (/) ) ) )
9695rexlimdva 3031 . . . . 5  |-  ( ( ( A  e.  V  /\  F : A --> Haus )  /\  ( x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  ->  ( E. k  e.  A  -.  ( x `  k
)  =  ( y `
 k )  ->  E. u  e.  ( Xt_ `  F ) E. v  e.  ( Xt_ `  F ) ( x  e.  u  /\  y  e.  v  /\  (
u  i^i  v )  =  (/) ) ) )
9722, 96syl5bir 233 . . . 4  |-  ( ( ( A  e.  V  /\  F : A --> Haus )  /\  ( x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  ->  ( -.  A. k  e.  A  ( x `  k
)  =  ( y `
 k )  ->  E. u  e.  ( Xt_ `  F ) E. v  e.  ( Xt_ `  F ) ( x  e.  u  /\  y  e.  v  /\  (
u  i^i  v )  =  (/) ) ) )
9821, 97sylbid 230 . . 3  |-  ( ( ( A  e.  V  /\  F : A --> Haus )  /\  ( x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  ->  (
x  =/=  y  ->  E. u  e.  ( Xt_ `  F ) E. v  e.  ( Xt_ `  F ) ( x  e.  u  /\  y  e.  v  /\  (
u  i^i  v )  =  (/) ) ) )
9998ralrimivva 2971 . 2  |-  ( ( A  e.  V  /\  F : A --> Haus )  ->  A. x  e.  U. ( Xt_ `  F ) A. y  e.  U. ( Xt_ `  F ) ( x  =/=  y  ->  E. u  e.  (
Xt_ `  F ) E. v  e.  ( Xt_ `  F ) ( x  e.  u  /\  y  e.  v  /\  ( u  i^i  v
)  =  (/) ) ) )
10046ishaus 21126 . 2  |-  ( (
Xt_ `  F )  e.  Haus  <->  ( ( Xt_ `  F )  e.  Top  /\ 
A. x  e.  U. ( Xt_ `  F ) A. y  e.  U. ( Xt_ `  F ) ( x  =/=  y  ->  E. u  e.  (
Xt_ `  F ) E. v  e.  ( Xt_ `  F ) ( x  e.  u  /\  y  e.  v  /\  ( u  i^i  v
)  =  (/) ) ) ) )
1016, 99, 100sylanbrc 698 1  |-  ( ( A  e.  V  /\  F : A --> Haus )  ->  ( Xt_ `  F
)  e.  Haus )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   {crab 2916    i^i cin 3573    C_ wss 3574   (/)c0 3915   U.cuni 4436    |-> cmpt 4729   `'ccnv 5113   "cima 5117    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   X_cixp 7908   Xt_cpt 16099   Topctop 20698    Cn ccn 21028   Hauscha 21112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-fin 7959  df-fi 8317  df-topgen 16104  df-pt 16105  df-top 20699  df-topon 20716  df-bases 20750  df-cn 21031  df-haus 21119
This theorem is referenced by:  poimirlem30  33439
  Copyright terms: Public domain W3C validator