Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  heiborlem2 Structured version   Visualization version   Unicode version

Theorem heiborlem2 33611
Description: Lemma for heibor 33620. Substitutions for the set  G. (Contributed by Jeff Madsen, 23-Jan-2014.)
Hypotheses
Ref Expression
heibor.1  |-  J  =  ( MetOpen `  D )
heibor.3  |-  K  =  { u  |  -.  E. v  e.  ( ~P U  i^i  Fin )
u  C_  U. v }
heibor.4  |-  G  =  { <. y ,  n >.  |  ( n  e. 
NN0  /\  y  e.  ( F `  n )  /\  ( y B n )  e.  K
) }
heiborlem2.5  |-  A  e. 
_V
heiborlem2.6  |-  C  e. 
_V
Assertion
Ref Expression
heiborlem2  |-  ( A G C  <->  ( C  e.  NN0  /\  A  e.  ( F `  C
)  /\  ( A B C )  e.  K
) )
Distinct variable groups:    y, n, A    u, n, F, y   
v, n, D, u, y    B, n, u, v, y    n, J, u, v, y    U, n, u, v, y    C, n, u, v, y    n, K, y
Allowed substitution hints:    A( v, u)    F( v)    G( y, v, u, n)    K( v, u)

Proof of Theorem heiborlem2
StepHypRef Expression
1 heiborlem2.5 . 2  |-  A  e. 
_V
2 heiborlem2.6 . 2  |-  C  e. 
_V
3 eleq1 2689 . . 3  |-  ( y  =  A  ->  (
y  e.  ( F `
 n )  <->  A  e.  ( F `  n ) ) )
4 oveq1 6657 . . . 4  |-  ( y  =  A  ->  (
y B n )  =  ( A B n ) )
54eleq1d 2686 . . 3  |-  ( y  =  A  ->  (
( y B n )  e.  K  <->  ( A B n )  e.  K ) )
63, 53anbi23d 1402 . 2  |-  ( y  =  A  ->  (
( n  e.  NN0  /\  y  e.  ( F `
 n )  /\  ( y B n )  e.  K )  <-> 
( n  e.  NN0  /\  A  e.  ( F `
 n )  /\  ( A B n )  e.  K ) ) )
7 eleq1 2689 . . 3  |-  ( n  =  C  ->  (
n  e.  NN0  <->  C  e.  NN0 ) )
8 fveq2 6191 . . . 4  |-  ( n  =  C  ->  ( F `  n )  =  ( F `  C ) )
98eleq2d 2687 . . 3  |-  ( n  =  C  ->  ( A  e.  ( F `  n )  <->  A  e.  ( F `  C ) ) )
10 oveq2 6658 . . . 4  |-  ( n  =  C  ->  ( A B n )  =  ( A B C ) )
1110eleq1d 2686 . . 3  |-  ( n  =  C  ->  (
( A B n )  e.  K  <->  ( A B C )  e.  K
) )
127, 9, 113anbi123d 1399 . 2  |-  ( n  =  C  ->  (
( n  e.  NN0  /\  A  e.  ( F `
 n )  /\  ( A B n )  e.  K )  <->  ( C  e.  NN0  /\  A  e.  ( F `  C
)  /\  ( A B C )  e.  K
) ) )
13 heibor.4 . 2  |-  G  =  { <. y ,  n >.  |  ( n  e. 
NN0  /\  y  e.  ( F `  n )  /\  ( y B n )  e.  K
) }
141, 2, 6, 12, 13brab 4998 1  |-  ( A G C  <->  ( C  e.  NN0  /\  A  e.  ( F `  C
)  /\  ( A B C )  e.  K
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 196    /\ w3a 1037    = wceq 1483    e. wcel 1990   {cab 2608   E.wrex 2913   _Vcvv 3200    i^i cin 3573    C_ wss 3574   ~Pcpw 4158   U.cuni 4436   class class class wbr 4653   {copab 4712   ` cfv 5888  (class class class)co 6650   Fincfn 7955   NN0cn0 11292   MetOpencmopn 19736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-iota 5851  df-fv 5896  df-ov 6653
This theorem is referenced by:  heiborlem3  33612  heiborlem5  33614  heiborlem6  33615  heiborlem8  33617  heiborlem10  33619
  Copyright terms: Public domain W3C validator