Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  heibor Structured version   Visualization version   Unicode version

Theorem heibor 33620
Description: Generalized Heine-Borel Theorem. A metric space is compact iff it is complete and totally bounded. See heibor1 33609 and heiborlem1 33610 for a description of the proof. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 28-Jan-2014.)
Hypothesis
Ref Expression
heibor.1  |-  J  =  ( MetOpen `  D )
Assertion
Ref Expression
heibor  |-  ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  <->  ( D  e.  ( CMet `  X
)  /\  D  e.  ( TotBnd `  X )
) )

Proof of Theorem heibor
Dummy variables  t  n  y  k  r  u  m  v  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 heibor.1 . . 3  |-  J  =  ( MetOpen `  D )
21heibor1 33609 . 2  |-  ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  ->  ( D  e.  ( CMet `  X )  /\  D  e.  ( TotBnd `  X )
) )
3 cmetmet 23084 . . . 4  |-  ( D  e.  ( CMet `  X
)  ->  D  e.  ( Met `  X ) )
43adantr 481 . . 3  |-  ( ( D  e.  ( CMet `  X )  /\  D  e.  ( TotBnd `  X )
)  ->  D  e.  ( Met `  X ) )
5 metxmet 22139 . . . . . 6  |-  ( D  e.  ( Met `  X
)  ->  D  e.  ( *Met `  X
) )
61mopntop 22245 . . . . . 6  |-  ( D  e.  ( *Met `  X )  ->  J  e.  Top )
73, 5, 63syl 18 . . . . 5  |-  ( D  e.  ( CMet `  X
)  ->  J  e.  Top )
87adantr 481 . . . 4  |-  ( ( D  e.  ( CMet `  X )  /\  D  e.  ( TotBnd `  X )
)  ->  J  e.  Top )
9 istotbnd 33568 . . . . . . . . . . . . 13  |-  ( D  e.  ( TotBnd `  X
)  <->  ( D  e.  ( Met `  X
)  /\  A. r  e.  RR+  E. u  e. 
Fin  ( U. u  =  X  /\  A. v  e.  u  E. y  e.  X  v  =  ( y ( ball `  D ) r ) ) ) )
109simprbi 480 . . . . . . . . . . . 12  |-  ( D  e.  ( TotBnd `  X
)  ->  A. r  e.  RR+  E. u  e. 
Fin  ( U. u  =  X  /\  A. v  e.  u  E. y  e.  X  v  =  ( y ( ball `  D ) r ) ) )
11 2nn 11185 . . . . . . . . . . . . . . 15  |-  2  e.  NN
12 nnexpcl 12873 . . . . . . . . . . . . . . 15  |-  ( ( 2  e.  NN  /\  n  e.  NN0 )  -> 
( 2 ^ n
)  e.  NN )
1311, 12mpan 706 . . . . . . . . . . . . . 14  |-  ( n  e.  NN0  ->  ( 2 ^ n )  e.  NN )
1413nnrpd 11870 . . . . . . . . . . . . 13  |-  ( n  e.  NN0  ->  ( 2 ^ n )  e.  RR+ )
1514rpreccld 11882 . . . . . . . . . . . 12  |-  ( n  e.  NN0  ->  ( 1  /  ( 2 ^ n ) )  e.  RR+ )
16 oveq2 6658 . . . . . . . . . . . . . . . . . 18  |-  ( r  =  ( 1  / 
( 2 ^ n
) )  ->  (
y ( ball `  D
) r )  =  ( y ( ball `  D ) ( 1  /  ( 2 ^ n ) ) ) )
1716eqeq2d 2632 . . . . . . . . . . . . . . . . 17  |-  ( r  =  ( 1  / 
( 2 ^ n
) )  ->  (
v  =  ( y ( ball `  D
) r )  <->  v  =  ( y ( ball `  D ) ( 1  /  ( 2 ^ n ) ) ) ) )
1817rexbidv 3052 . . . . . . . . . . . . . . . 16  |-  ( r  =  ( 1  / 
( 2 ^ n
) )  ->  ( E. y  e.  X  v  =  ( y
( ball `  D )
r )  <->  E. y  e.  X  v  =  ( y ( ball `  D ) ( 1  /  ( 2 ^ n ) ) ) ) )
1918ralbidv 2986 . . . . . . . . . . . . . . 15  |-  ( r  =  ( 1  / 
( 2 ^ n
) )  ->  ( A. v  e.  u  E. y  e.  X  v  =  ( y
( ball `  D )
r )  <->  A. v  e.  u  E. y  e.  X  v  =  ( y ( ball `  D ) ( 1  /  ( 2 ^ n ) ) ) ) )
2019anbi2d 740 . . . . . . . . . . . . . 14  |-  ( r  =  ( 1  / 
( 2 ^ n
) )  ->  (
( U. u  =  X  /\  A. v  e.  u  E. y  e.  X  v  =  ( y ( ball `  D ) r ) )  <->  ( U. u  =  X  /\  A. v  e.  u  E. y  e.  X  v  =  ( y ( ball `  D ) ( 1  /  ( 2 ^ n ) ) ) ) ) )
2120rexbidv 3052 . . . . . . . . . . . . 13  |-  ( r  =  ( 1  / 
( 2 ^ n
) )  ->  ( E. u  e.  Fin  ( U. u  =  X  /\  A. v  e.  u  E. y  e.  X  v  =  ( y ( ball `  D
) r ) )  <->  E. u  e.  Fin  ( U. u  =  X  /\  A. v  e.  u  E. y  e.  X  v  =  ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) ) ) )
2221rspccva 3308 . . . . . . . . . . . 12  |-  ( ( A. r  e.  RR+  E. u  e.  Fin  ( U. u  =  X  /\  A. v  e.  u  E. y  e.  X  v  =  ( y
( ball `  D )
r ) )  /\  ( 1  /  (
2 ^ n ) )  e.  RR+ )  ->  E. u  e.  Fin  ( U. u  =  X  /\  A. v  e.  u  E. y  e.  X  v  =  ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) ) )
2310, 15, 22syl2an 494 . . . . . . . . . . 11  |-  ( ( D  e.  ( TotBnd `  X )  /\  n  e.  NN0 )  ->  E. u  e.  Fin  ( U. u  =  X  /\  A. v  e.  u  E. y  e.  X  v  =  ( y ( ball `  D ) ( 1  /  ( 2 ^ n ) ) ) ) )
2423expcom 451 . . . . . . . . . 10  |-  ( n  e.  NN0  ->  ( D  e.  ( TotBnd `  X
)  ->  E. u  e.  Fin  ( U. u  =  X  /\  A. v  e.  u  E. y  e.  X  v  =  ( y ( ball `  D ) ( 1  /  ( 2 ^ n ) ) ) ) ) )
2524adantl 482 . . . . . . . . 9  |-  ( ( D  e.  ( CMet `  X )  /\  n  e.  NN0 )  ->  ( D  e.  ( TotBnd `  X )  ->  E. u  e.  Fin  ( U. u  =  X  /\  A. v  e.  u  E. y  e.  X  v  =  ( y ( ball `  D ) ( 1  /  ( 2 ^ n ) ) ) ) ) )
26 oveq1 6657 . . . . . . . . . . . . . . 15  |-  ( y  =  ( m `  v )  ->  (
y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) )  =  ( ( m `  v ) ( ball `  D ) ( 1  /  ( 2 ^ n ) ) ) )
2726eqeq2d 2632 . . . . . . . . . . . . . 14  |-  ( y  =  ( m `  v )  ->  (
v  =  ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) )  <->  v  =  ( ( m `  v ) ( ball `  D ) ( 1  /  ( 2 ^ n ) ) ) ) )
2827ac6sfi 8204 . . . . . . . . . . . . 13  |-  ( ( u  e.  Fin  /\  A. v  e.  u  E. y  e.  X  v  =  ( y (
ball `  D )
( 1  /  (
2 ^ n ) ) ) )  ->  E. m ( m : u --> X  /\  A. v  e.  u  v  =  ( ( m `
 v ) (
ball `  D )
( 1  /  (
2 ^ n ) ) ) ) )
2928adantrl 752 . . . . . . . . . . . 12  |-  ( ( u  e.  Fin  /\  ( U. u  =  X  /\  A. v  e.  u  E. y  e.  X  v  =  ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) ) )  ->  E. m
( m : u --> X  /\  A. v  e.  u  v  =  ( ( m `  v ) ( ball `  D ) ( 1  /  ( 2 ^ n ) ) ) ) )
3029adantl 482 . . . . . . . . . . 11  |-  ( ( ( D  e.  (
CMet `  X )  /\  n  e.  NN0 )  /\  ( u  e. 
Fin  /\  ( U. u  =  X  /\  A. v  e.  u  E. y  e.  X  v  =  ( y (
ball `  D )
( 1  /  (
2 ^ n ) ) ) ) ) )  ->  E. m
( m : u --> X  /\  A. v  e.  u  v  =  ( ( m `  v ) ( ball `  D ) ( 1  /  ( 2 ^ n ) ) ) ) )
31 simp3l 1089 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( D  e.  (
CMet `  X )  /\  n  e.  NN0 )  /\  ( u  e. 
Fin  /\  U. u  =  X )  /\  (
m : u --> X  /\  A. v  e.  u  v  =  ( ( m `
 v ) (
ball `  D )
( 1  /  (
2 ^ n ) ) ) ) )  ->  m : u --> X )
32 frn 6053 . . . . . . . . . . . . . . . . . . 19  |-  ( m : u --> X  ->  ran  m  C_  X )
3331, 32syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( D  e.  (
CMet `  X )  /\  n  e.  NN0 )  /\  ( u  e. 
Fin  /\  U. u  =  X )  /\  (
m : u --> X  /\  A. v  e.  u  v  =  ( ( m `
 v ) (
ball `  D )
( 1  /  (
2 ^ n ) ) ) ) )  ->  ran  m  C_  X
)
341mopnuni 22246 . . . . . . . . . . . . . . . . . . . . 21  |-  ( D  e.  ( *Met `  X )  ->  X  =  U. J )
353, 5, 343syl 18 . . . . . . . . . . . . . . . . . . . 20  |-  ( D  e.  ( CMet `  X
)  ->  X  =  U. J )
3635adantr 481 . . . . . . . . . . . . . . . . . . 19  |-  ( ( D  e.  ( CMet `  X )  /\  n  e.  NN0 )  ->  X  =  U. J )
37363ad2ant1 1082 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( D  e.  (
CMet `  X )  /\  n  e.  NN0 )  /\  ( u  e. 
Fin  /\  U. u  =  X )  /\  (
m : u --> X  /\  A. v  e.  u  v  =  ( ( m `
 v ) (
ball `  D )
( 1  /  (
2 ^ n ) ) ) ) )  ->  X  =  U. J )
3833, 37sseqtrd 3641 . . . . . . . . . . . . . . . . 17  |-  ( ( ( D  e.  (
CMet `  X )  /\  n  e.  NN0 )  /\  ( u  e. 
Fin  /\  U. u  =  X )  /\  (
m : u --> X  /\  A. v  e.  u  v  =  ( ( m `
 v ) (
ball `  D )
( 1  /  (
2 ^ n ) ) ) ) )  ->  ran  m  C_  U. J
)
39 fvex 6201 . . . . . . . . . . . . . . . . . . . 20  |-  ( MetOpen `  D )  e.  _V
401, 39eqeltri 2697 . . . . . . . . . . . . . . . . . . 19  |-  J  e. 
_V
4140uniex 6953 . . . . . . . . . . . . . . . . . 18  |-  U. J  e.  _V
4241elpw2 4828 . . . . . . . . . . . . . . . . 17  |-  ( ran  m  e.  ~P U. J 
<->  ran  m  C_  U. J
)
4338, 42sylibr 224 . . . . . . . . . . . . . . . 16  |-  ( ( ( D  e.  (
CMet `  X )  /\  n  e.  NN0 )  /\  ( u  e. 
Fin  /\  U. u  =  X )  /\  (
m : u --> X  /\  A. v  e.  u  v  =  ( ( m `
 v ) (
ball `  D )
( 1  /  (
2 ^ n ) ) ) ) )  ->  ran  m  e.  ~P U. J )
44 simp2l 1087 . . . . . . . . . . . . . . . . 17  |-  ( ( ( D  e.  (
CMet `  X )  /\  n  e.  NN0 )  /\  ( u  e. 
Fin  /\  U. u  =  X )  /\  (
m : u --> X  /\  A. v  e.  u  v  =  ( ( m `
 v ) (
ball `  D )
( 1  /  (
2 ^ n ) ) ) ) )  ->  u  e.  Fin )
45 ffn 6045 . . . . . . . . . . . . . . . . . . 19  |-  ( m : u --> X  ->  m  Fn  u )
46 dffn4 6121 . . . . . . . . . . . . . . . . . . 19  |-  ( m  Fn  u  <->  m :
u -onto-> ran  m )
4745, 46sylib 208 . . . . . . . . . . . . . . . . . 18  |-  ( m : u --> X  ->  m : u -onto-> ran  m
)
48 fofi 8252 . . . . . . . . . . . . . . . . . 18  |-  ( ( u  e.  Fin  /\  m : u -onto-> ran  m
)  ->  ran  m  e. 
Fin )
4947, 48sylan2 491 . . . . . . . . . . . . . . . . 17  |-  ( ( u  e.  Fin  /\  m : u --> X )  ->  ran  m  e.  Fin )
5044, 31, 49syl2anc 693 . . . . . . . . . . . . . . . 16  |-  ( ( ( D  e.  (
CMet `  X )  /\  n  e.  NN0 )  /\  ( u  e. 
Fin  /\  U. u  =  X )  /\  (
m : u --> X  /\  A. v  e.  u  v  =  ( ( m `
 v ) (
ball `  D )
( 1  /  (
2 ^ n ) ) ) ) )  ->  ran  m  e.  Fin )
5143, 50elind 3798 . . . . . . . . . . . . . . 15  |-  ( ( ( D  e.  (
CMet `  X )  /\  n  e.  NN0 )  /\  ( u  e. 
Fin  /\  U. u  =  X )  /\  (
m : u --> X  /\  A. v  e.  u  v  =  ( ( m `
 v ) (
ball `  D )
( 1  /  (
2 ^ n ) ) ) ) )  ->  ran  m  e.  ( ~P U. J  i^i  Fin ) )
5226eleq2d 2687 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =  ( m `  v )  ->  (
r  e.  ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) )  <->  r  e.  ( ( m `  v ) ( ball `  D ) ( 1  /  ( 2 ^ n ) ) ) ) )
5352rexrn 6361 . . . . . . . . . . . . . . . . . . 19  |-  ( m  Fn  u  ->  ( E. y  e.  ran  m  r  e.  (
y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) )  <->  E. v  e.  u  r  e.  ( ( m `  v ) ( ball `  D ) ( 1  /  ( 2 ^ n ) ) ) ) )
54 eliun 4524 . . . . . . . . . . . . . . . . . . 19  |-  ( r  e.  U_ y  e. 
ran  m ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) )  <->  E. y  e.  ran  m  r  e.  ( y ( ball `  D ) ( 1  /  ( 2 ^ n ) ) ) )
55 eliun 4524 . . . . . . . . . . . . . . . . . . 19  |-  ( r  e.  U_ v  e.  u  ( ( m `
 v ) (
ball `  D )
( 1  /  (
2 ^ n ) ) )  <->  E. v  e.  u  r  e.  ( ( m `  v ) ( ball `  D ) ( 1  /  ( 2 ^ n ) ) ) )
5653, 54, 553bitr4g 303 . . . . . . . . . . . . . . . . . 18  |-  ( m  Fn  u  ->  (
r  e.  U_ y  e.  ran  m ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) )  <->  r  e.  U_ v  e.  u  ( ( m `  v
) ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) ) )
5756eqrdv 2620 . . . . . . . . . . . . . . . . 17  |-  ( m  Fn  u  ->  U_ y  e.  ran  m ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) )  = 
U_ v  e.  u  ( ( m `  v ) ( ball `  D ) ( 1  /  ( 2 ^ n ) ) ) )
5831, 45, 573syl 18 . . . . . . . . . . . . . . . 16  |-  ( ( ( D  e.  (
CMet `  X )  /\  n  e.  NN0 )  /\  ( u  e. 
Fin  /\  U. u  =  X )  /\  (
m : u --> X  /\  A. v  e.  u  v  =  ( ( m `
 v ) (
ball `  D )
( 1  /  (
2 ^ n ) ) ) ) )  ->  U_ y  e.  ran  m ( y (
ball `  D )
( 1  /  (
2 ^ n ) ) )  =  U_ v  e.  u  (
( m `  v
) ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) )
59 simp3r 1090 . . . . . . . . . . . . . . . . 17  |-  ( ( ( D  e.  (
CMet `  X )  /\  n  e.  NN0 )  /\  ( u  e. 
Fin  /\  U. u  =  X )  /\  (
m : u --> X  /\  A. v  e.  u  v  =  ( ( m `
 v ) (
ball `  D )
( 1  /  (
2 ^ n ) ) ) ) )  ->  A. v  e.  u  v  =  ( (
m `  v )
( ball `  D )
( 1  /  (
2 ^ n ) ) ) )
60 uniiun 4573 . . . . . . . . . . . . . . . . . 18  |-  U. u  =  U_ v  e.  u  v
61 iuneq2 4537 . . . . . . . . . . . . . . . . . 18  |-  ( A. v  e.  u  v  =  ( ( m `
 v ) (
ball `  D )
( 1  /  (
2 ^ n ) ) )  ->  U_ v  e.  u  v  =  U_ v  e.  u  ( ( m `  v
) ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) )
6260, 61syl5eq 2668 . . . . . . . . . . . . . . . . 17  |-  ( A. v  e.  u  v  =  ( ( m `
 v ) (
ball `  D )
( 1  /  (
2 ^ n ) ) )  ->  U. u  =  U_ v  e.  u  ( ( m `  v ) ( ball `  D ) ( 1  /  ( 2 ^ n ) ) ) )
6359, 62syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( D  e.  (
CMet `  X )  /\  n  e.  NN0 )  /\  ( u  e. 
Fin  /\  U. u  =  X )  /\  (
m : u --> X  /\  A. v  e.  u  v  =  ( ( m `
 v ) (
ball `  D )
( 1  /  (
2 ^ n ) ) ) ) )  ->  U. u  =  U_ v  e.  u  (
( m `  v
) ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) )
64 simp2r 1088 . . . . . . . . . . . . . . . 16  |-  ( ( ( D  e.  (
CMet `  X )  /\  n  e.  NN0 )  /\  ( u  e. 
Fin  /\  U. u  =  X )  /\  (
m : u --> X  /\  A. v  e.  u  v  =  ( ( m `
 v ) (
ball `  D )
( 1  /  (
2 ^ n ) ) ) ) )  ->  U. u  =  X )
6558, 63, 643eqtr2rd 2663 . . . . . . . . . . . . . . 15  |-  ( ( ( D  e.  (
CMet `  X )  /\  n  e.  NN0 )  /\  ( u  e. 
Fin  /\  U. u  =  X )  /\  (
m : u --> X  /\  A. v  e.  u  v  =  ( ( m `
 v ) (
ball `  D )
( 1  /  (
2 ^ n ) ) ) ) )  ->  X  =  U_ y  e.  ran  m ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) )
66 iuneq1 4534 . . . . . . . . . . . . . . . . 17  |-  ( t  =  ran  m  ->  U_ y  e.  t 
( y ( ball `  D ) ( 1  /  ( 2 ^ n ) ) )  =  U_ y  e. 
ran  m ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) )
6766eqeq2d 2632 . . . . . . . . . . . . . . . 16  |-  ( t  =  ran  m  -> 
( X  =  U_ y  e.  t  (
y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) )  <->  X  =  U_ y  e.  ran  m
( y ( ball `  D ) ( 1  /  ( 2 ^ n ) ) ) ) )
6867rspcev 3309 . . . . . . . . . . . . . . 15  |-  ( ( ran  m  e.  ( ~P U. J  i^i  Fin )  /\  X  = 
U_ y  e.  ran  m ( y (
ball `  D )
( 1  /  (
2 ^ n ) ) ) )  ->  E. t  e.  ( ~P U. J  i^i  Fin ) X  =  U_ y  e.  t  (
y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) )
6951, 65, 68syl2anc 693 . . . . . . . . . . . . . 14  |-  ( ( ( D  e.  (
CMet `  X )  /\  n  e.  NN0 )  /\  ( u  e. 
Fin  /\  U. u  =  X )  /\  (
m : u --> X  /\  A. v  e.  u  v  =  ( ( m `
 v ) (
ball `  D )
( 1  /  (
2 ^ n ) ) ) ) )  ->  E. t  e.  ( ~P U. J  i^i  Fin ) X  =  U_ y  e.  t  (
y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) )
70693expia 1267 . . . . . . . . . . . . 13  |-  ( ( ( D  e.  (
CMet `  X )  /\  n  e.  NN0 )  /\  ( u  e. 
Fin  /\  U. u  =  X ) )  -> 
( ( m : u --> X  /\  A. v  e.  u  v  =  ( ( m `
 v ) (
ball `  D )
( 1  /  (
2 ^ n ) ) ) )  ->  E. t  e.  ( ~P U. J  i^i  Fin ) X  =  U_ y  e.  t  (
y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) ) )
7170adantrrr 761 . . . . . . . . . . . 12  |-  ( ( ( D  e.  (
CMet `  X )  /\  n  e.  NN0 )  /\  ( u  e. 
Fin  /\  ( U. u  =  X  /\  A. v  e.  u  E. y  e.  X  v  =  ( y (
ball `  D )
( 1  /  (
2 ^ n ) ) ) ) ) )  ->  ( (
m : u --> X  /\  A. v  e.  u  v  =  ( ( m `
 v ) (
ball `  D )
( 1  /  (
2 ^ n ) ) ) )  ->  E. t  e.  ( ~P U. J  i^i  Fin ) X  =  U_ y  e.  t  (
y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) ) )
7271exlimdv 1861 . . . . . . . . . . 11  |-  ( ( ( D  e.  (
CMet `  X )  /\  n  e.  NN0 )  /\  ( u  e. 
Fin  /\  ( U. u  =  X  /\  A. v  e.  u  E. y  e.  X  v  =  ( y (
ball `  D )
( 1  /  (
2 ^ n ) ) ) ) ) )  ->  ( E. m ( m : u --> X  /\  A. v  e.  u  v  =  ( ( m `
 v ) (
ball `  D )
( 1  /  (
2 ^ n ) ) ) )  ->  E. t  e.  ( ~P U. J  i^i  Fin ) X  =  U_ y  e.  t  (
y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) ) )
7330, 72mpd 15 . . . . . . . . . 10  |-  ( ( ( D  e.  (
CMet `  X )  /\  n  e.  NN0 )  /\  ( u  e. 
Fin  /\  ( U. u  =  X  /\  A. v  e.  u  E. y  e.  X  v  =  ( y (
ball `  D )
( 1  /  (
2 ^ n ) ) ) ) ) )  ->  E. t  e.  ( ~P U. J  i^i  Fin ) X  = 
U_ y  e.  t  ( y ( ball `  D ) ( 1  /  ( 2 ^ n ) ) ) )
7473rexlimdvaa 3032 . . . . . . . . 9  |-  ( ( D  e.  ( CMet `  X )  /\  n  e.  NN0 )  ->  ( E. u  e.  Fin  ( U. u  =  X  /\  A. v  e.  u  E. y  e.  X  v  =  ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) )  ->  E. t  e.  ( ~P U. J  i^i  Fin ) X  =  U_ y  e.  t  (
y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) ) )
7525, 74syld 47 . . . . . . . 8  |-  ( ( D  e.  ( CMet `  X )  /\  n  e.  NN0 )  ->  ( D  e.  ( TotBnd `  X )  ->  E. t  e.  ( ~P U. J  i^i  Fin ) X  = 
U_ y  e.  t  ( y ( ball `  D ) ( 1  /  ( 2 ^ n ) ) ) ) )
7675ralrimdva 2969 . . . . . . 7  |-  ( D  e.  ( CMet `  X
)  ->  ( D  e.  ( TotBnd `  X )  ->  A. n  e.  NN0  E. t  e.  ( ~P
U. J  i^i  Fin ) X  =  U_ y  e.  t  (
y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) ) )
7741pwex 4848 . . . . . . . . 9  |-  ~P U. J  e.  _V
7877inex1 4799 . . . . . . . 8  |-  ( ~P
U. J  i^i  Fin )  e.  _V
79 nn0ennn 12778 . . . . . . . . 9  |-  NN0  ~~  NN
80 nnenom 12779 . . . . . . . . 9  |-  NN  ~~  om
8179, 80entri 8010 . . . . . . . 8  |-  NN0  ~~  om
82 iuneq1 4534 . . . . . . . . 9  |-  ( t  =  ( m `  n )  ->  U_ y  e.  t  ( y
( ball `  D )
( 1  /  (
2 ^ n ) ) )  =  U_ y  e.  ( m `  n ) ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) )
8382eqeq2d 2632 . . . . . . . 8  |-  ( t  =  ( m `  n )  ->  ( X  =  U_ y  e.  t  ( y (
ball `  D )
( 1  /  (
2 ^ n ) ) )  <->  X  =  U_ y  e.  ( m `
 n ) ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) ) )
8478, 81, 83axcc4 9261 . . . . . . 7  |-  ( A. n  e.  NN0  E. t  e.  ( ~P U. J  i^i  Fin ) X  = 
U_ y  e.  t  ( y ( ball `  D ) ( 1  /  ( 2 ^ n ) ) )  ->  E. m ( m : NN0 --> ( ~P
U. J  i^i  Fin )  /\  A. n  e. 
NN0  X  =  U_ y  e.  ( m `  n ) ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) ) )
8576, 84syl6 35 . . . . . 6  |-  ( D  e.  ( CMet `  X
)  ->  ( D  e.  ( TotBnd `  X )  ->  E. m ( m : NN0 --> ( ~P
U. J  i^i  Fin )  /\  A. n  e. 
NN0  X  =  U_ y  e.  ( m `  n ) ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) ) ) )
86 elpwi 4168 . . . . . . . . . 10  |-  ( r  e.  ~P J  -> 
r  C_  J )
87 eqid 2622 . . . . . . . . . . . 12  |-  { u  |  -.  E. v  e.  ( ~P r  i^i 
Fin ) u  C_  U. v }  =  {
u  |  -.  E. v  e.  ( ~P r  i^i  Fin ) u 
C_  U. v }
88 eqid 2622 . . . . . . . . . . . 12  |-  { <. t ,  k >.  |  ( k  e.  NN0  /\  t  e.  ( m `  k )  /\  (
t ( z  e.  X ,  m  e. 
NN0  |->  ( z (
ball `  D )
( 1  /  (
2 ^ m ) ) ) ) k )  e.  { u  |  -.  E. v  e.  ( ~P r  i^i 
Fin ) u  C_  U. v } ) }  =  { <. t ,  k >.  |  ( k  e.  NN0  /\  t  e.  ( m `  k )  /\  (
t ( z  e.  X ,  m  e. 
NN0  |->  ( z (
ball `  D )
( 1  /  (
2 ^ m ) ) ) ) k )  e.  { u  |  -.  E. v  e.  ( ~P r  i^i 
Fin ) u  C_  U. v } ) }
89 eqid 2622 . . . . . . . . . . . 12  |-  ( z  e.  X ,  m  e.  NN0  |->  ( z (
ball `  D )
( 1  /  (
2 ^ m ) ) ) )  =  ( z  e.  X ,  m  e.  NN0  |->  ( z ( ball `  D ) ( 1  /  ( 2 ^ m ) ) ) )
90 simpl 473 . . . . . . . . . . . 12  |-  ( ( D  e.  ( CMet `  X )  /\  (
m : NN0 --> ( ~P
U. J  i^i  Fin )  /\  A. n  e. 
NN0  X  =  U_ y  e.  ( m `  n ) ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) ) )  ->  D  e.  ( CMet `  X )
)
9135pweqd 4163 . . . . . . . . . . . . . . . 16  |-  ( D  e.  ( CMet `  X
)  ->  ~P X  =  ~P U. J )
9291ineq1d 3813 . . . . . . . . . . . . . . 15  |-  ( D  e.  ( CMet `  X
)  ->  ( ~P X  i^i  Fin )  =  ( ~P U. J  i^i  Fin ) )
9392feq3d 6032 . . . . . . . . . . . . . 14  |-  ( D  e.  ( CMet `  X
)  ->  ( m : NN0 --> ( ~P X  i^i  Fin )  <->  m : NN0
--> ( ~P U. J  i^i  Fin ) ) )
9493biimpar 502 . . . . . . . . . . . . 13  |-  ( ( D  e.  ( CMet `  X )  /\  m : NN0 --> ( ~P U. J  i^i  Fin ) )  ->  m : NN0 --> ( ~P X  i^i  Fin ) )
9594adantrr 753 . . . . . . . . . . . 12  |-  ( ( D  e.  ( CMet `  X )  /\  (
m : NN0 --> ( ~P
U. J  i^i  Fin )  /\  A. n  e. 
NN0  X  =  U_ y  e.  ( m `  n ) ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) ) )  ->  m : NN0
--> ( ~P X  i^i  Fin ) )
96 oveq1 6657 . . . . . . . . . . . . . . . . . . 19  |-  ( t  =  y  ->  (
t ( z  e.  X ,  m  e. 
NN0  |->  ( z (
ball `  D )
( 1  /  (
2 ^ m ) ) ) ) n )  =  ( y ( z  e.  X ,  m  e.  NN0  |->  ( z ( ball `  D ) ( 1  /  ( 2 ^ m ) ) ) ) n ) )
9796cbviunv 4559 . . . . . . . . . . . . . . . . . 18  |-  U_ t  e.  ( m `  n
) ( t ( z  e.  X ,  m  e.  NN0  |->  ( z ( ball `  D
) ( 1  / 
( 2 ^ m
) ) ) ) n )  =  U_ y  e.  ( m `  n ) ( y ( z  e.  X ,  m  e.  NN0  |->  ( z ( ball `  D ) ( 1  /  ( 2 ^ m ) ) ) ) n )
98 id 22 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( m : NN0 --> ( ~P
U. J  i^i  Fin )  ->  m : NN0 --> ( ~P U. J  i^i  Fin ) )
99 inss1 3833 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ~P
U. J  i^i  Fin )  C_  ~P U. J
10099, 91syl5sseqr 3654 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( D  e.  ( CMet `  X
)  ->  ( ~P U. J  i^i  Fin )  C_ 
~P X )
101 fss 6056 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( m : NN0 --> ( ~P
U. J  i^i  Fin )  /\  ( ~P U. J  i^i  Fin )  C_  ~P X )  ->  m : NN0 --> ~P X )
10298, 100, 101syl2anr 495 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( D  e.  ( CMet `  X )  /\  m : NN0 --> ( ~P U. J  i^i  Fin ) )  ->  m : NN0 --> ~P X )
103102ffvelrnda 6359 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( D  e.  (
CMet `  X )  /\  m : NN0 --> ( ~P
U. J  i^i  Fin ) )  /\  n  e.  NN0 )  ->  (
m `  n )  e.  ~P X )
104103elpwid 4170 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( D  e.  (
CMet `  X )  /\  m : NN0 --> ( ~P
U. J  i^i  Fin ) )  /\  n  e.  NN0 )  ->  (
m `  n )  C_  X )
105104sselda 3603 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( D  e.  ( CMet `  X
)  /\  m : NN0
--> ( ~P U. J  i^i  Fin ) )  /\  n  e.  NN0 )  /\  y  e.  ( m `  n ) )  -> 
y  e.  X )
106 simplr 792 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( D  e.  ( CMet `  X
)  /\  m : NN0
--> ( ~P U. J  i^i  Fin ) )  /\  n  e.  NN0 )  /\  y  e.  ( m `  n ) )  ->  n  e.  NN0 )
107 oveq1 6657 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z  =  y  ->  (
z ( ball `  D
) ( 1  / 
( 2 ^ m
) ) )  =  ( y ( ball `  D ) ( 1  /  ( 2 ^ m ) ) ) )
108 oveq2 6658 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( m  =  n  ->  (
2 ^ m )  =  ( 2 ^ n ) )
109108oveq2d 6666 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( m  =  n  ->  (
1  /  ( 2 ^ m ) )  =  ( 1  / 
( 2 ^ n
) ) )
110109oveq2d 6666 . . . . . . . . . . . . . . . . . . . . 21  |-  ( m  =  n  ->  (
y ( ball `  D
) ( 1  / 
( 2 ^ m
) ) )  =  ( y ( ball `  D ) ( 1  /  ( 2 ^ n ) ) ) )
111 ovex 6678 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) )  e. 
_V
112107, 110, 89, 111ovmpt2 6796 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( y  e.  X  /\  n  e.  NN0 )  -> 
( y ( z  e.  X ,  m  e.  NN0  |->  ( z (
ball `  D )
( 1  /  (
2 ^ m ) ) ) ) n )  =  ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) )
113105, 106, 112syl2anc 693 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( D  e.  ( CMet `  X
)  /\  m : NN0
--> ( ~P U. J  i^i  Fin ) )  /\  n  e.  NN0 )  /\  y  e.  ( m `  n ) )  -> 
( y ( z  e.  X ,  m  e.  NN0  |->  ( z (
ball `  D )
( 1  /  (
2 ^ m ) ) ) ) n )  =  ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) )
114113iuneq2dv 4542 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( D  e.  (
CMet `  X )  /\  m : NN0 --> ( ~P
U. J  i^i  Fin ) )  /\  n  e.  NN0 )  ->  U_ y  e.  ( m `  n
) ( y ( z  e.  X ,  m  e.  NN0  |->  ( z ( ball `  D
) ( 1  / 
( 2 ^ m
) ) ) ) n )  =  U_ y  e.  ( m `  n ) ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) )
11597, 114syl5eq 2668 . . . . . . . . . . . . . . . . 17  |-  ( ( ( D  e.  (
CMet `  X )  /\  m : NN0 --> ( ~P
U. J  i^i  Fin ) )  /\  n  e.  NN0 )  ->  U_ t  e.  ( m `  n
) ( t ( z  e.  X ,  m  e.  NN0  |->  ( z ( ball `  D
) ( 1  / 
( 2 ^ m
) ) ) ) n )  =  U_ y  e.  ( m `  n ) ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) )
116115eqeq2d 2632 . . . . . . . . . . . . . . . 16  |-  ( ( ( D  e.  (
CMet `  X )  /\  m : NN0 --> ( ~P
U. J  i^i  Fin ) )  /\  n  e.  NN0 )  ->  ( X  =  U_ t  e.  ( m `  n
) ( t ( z  e.  X ,  m  e.  NN0  |->  ( z ( ball `  D
) ( 1  / 
( 2 ^ m
) ) ) ) n )  <->  X  =  U_ y  e.  ( m `
 n ) ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) ) )
117116biimprd 238 . . . . . . . . . . . . . . 15  |-  ( ( ( D  e.  (
CMet `  X )  /\  m : NN0 --> ( ~P
U. J  i^i  Fin ) )  /\  n  e.  NN0 )  ->  ( X  =  U_ y  e.  ( m `  n
) ( y (
ball `  D )
( 1  /  (
2 ^ n ) ) )  ->  X  =  U_ t  e.  ( m `  n ) ( t ( z  e.  X ,  m  e.  NN0  |->  ( z (
ball `  D )
( 1  /  (
2 ^ m ) ) ) ) n ) ) )
118117ralimdva 2962 . . . . . . . . . . . . . 14  |-  ( ( D  e.  ( CMet `  X )  /\  m : NN0 --> ( ~P U. J  i^i  Fin ) )  ->  ( A. n  e.  NN0  X  =  U_ y  e.  ( m `  n ) ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) )  ->  A. n  e.  NN0  X  =  U_ t  e.  ( m `  n
) ( t ( z  e.  X ,  m  e.  NN0  |->  ( z ( ball `  D
) ( 1  / 
( 2 ^ m
) ) ) ) n ) ) )
119118impr 649 . . . . . . . . . . . . 13  |-  ( ( D  e.  ( CMet `  X )  /\  (
m : NN0 --> ( ~P
U. J  i^i  Fin )  /\  A. n  e. 
NN0  X  =  U_ y  e.  ( m `  n ) ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) ) )  ->  A. n  e.  NN0  X  =  U_ t  e.  ( m `  n ) ( t ( z  e.  X ,  m  e.  NN0  |->  ( z ( ball `  D ) ( 1  /  ( 2 ^ m ) ) ) ) n ) )
120 fveq2 6191 . . . . . . . . . . . . . . . . 17  |-  ( n  =  k  ->  (
m `  n )  =  ( m `  k ) )
121120iuneq1d 4545 . . . . . . . . . . . . . . . 16  |-  ( n  =  k  ->  U_ t  e.  ( m `  n
) ( t ( z  e.  X ,  m  e.  NN0  |->  ( z ( ball `  D
) ( 1  / 
( 2 ^ m
) ) ) ) n )  =  U_ t  e.  ( m `  k ) ( t ( z  e.  X ,  m  e.  NN0  |->  ( z ( ball `  D ) ( 1  /  ( 2 ^ m ) ) ) ) n ) )
122 simpl 473 . . . . . . . . . . . . . . . . . 18  |-  ( ( n  =  k  /\  t  e.  ( m `  k ) )  ->  n  =  k )
123122oveq2d 6666 . . . . . . . . . . . . . . . . 17  |-  ( ( n  =  k  /\  t  e.  ( m `  k ) )  -> 
( t ( z  e.  X ,  m  e.  NN0  |->  ( z (
ball `  D )
( 1  /  (
2 ^ m ) ) ) ) n )  =  ( t ( z  e.  X ,  m  e.  NN0  |->  ( z ( ball `  D ) ( 1  /  ( 2 ^ m ) ) ) ) k ) )
124123iuneq2dv 4542 . . . . . . . . . . . . . . . 16  |-  ( n  =  k  ->  U_ t  e.  ( m `  k
) ( t ( z  e.  X ,  m  e.  NN0  |->  ( z ( ball `  D
) ( 1  / 
( 2 ^ m
) ) ) ) n )  =  U_ t  e.  ( m `  k ) ( t ( z  e.  X ,  m  e.  NN0  |->  ( z ( ball `  D ) ( 1  /  ( 2 ^ m ) ) ) ) k ) )
125121, 124eqtrd 2656 . . . . . . . . . . . . . . 15  |-  ( n  =  k  ->  U_ t  e.  ( m `  n
) ( t ( z  e.  X ,  m  e.  NN0  |->  ( z ( ball `  D
) ( 1  / 
( 2 ^ m
) ) ) ) n )  =  U_ t  e.  ( m `  k ) ( t ( z  e.  X ,  m  e.  NN0  |->  ( z ( ball `  D ) ( 1  /  ( 2 ^ m ) ) ) ) k ) )
126125eqeq2d 2632 . . . . . . . . . . . . . 14  |-  ( n  =  k  ->  ( X  =  U_ t  e.  ( m `  n
) ( t ( z  e.  X ,  m  e.  NN0  |->  ( z ( ball `  D
) ( 1  / 
( 2 ^ m
) ) ) ) n )  <->  X  =  U_ t  e.  ( m `
 k ) ( t ( z  e.  X ,  m  e. 
NN0  |->  ( z (
ball `  D )
( 1  /  (
2 ^ m ) ) ) ) k ) ) )
127126cbvralv 3171 . . . . . . . . . . . . 13  |-  ( A. n  e.  NN0  X  = 
U_ t  e.  ( m `  n ) ( t ( z  e.  X ,  m  e.  NN0  |->  ( z (
ball `  D )
( 1  /  (
2 ^ m ) ) ) ) n )  <->  A. k  e.  NN0  X  =  U_ t  e.  ( m `  k
) ( t ( z  e.  X ,  m  e.  NN0  |->  ( z ( ball `  D
) ( 1  / 
( 2 ^ m
) ) ) ) k ) )
128119, 127sylib 208 . . . . . . . . . . . 12  |-  ( ( D  e.  ( CMet `  X )  /\  (
m : NN0 --> ( ~P
U. J  i^i  Fin )  /\  A. n  e. 
NN0  X  =  U_ y  e.  ( m `  n ) ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) ) )  ->  A. k  e.  NN0  X  =  U_ t  e.  ( m `  k ) ( t ( z  e.  X ,  m  e.  NN0  |->  ( z ( ball `  D ) ( 1  /  ( 2 ^ m ) ) ) ) k ) )
1291, 87, 88, 89, 90, 95, 128heiborlem10 33619 . . . . . . . . . . 11  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( m : NN0 --> ( ~P U. J  i^i  Fin )  /\  A. n  e.  NN0  X  =  U_ y  e.  ( m `  n ) ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) ) )  /\  ( r 
C_  J  /\  U. J  =  U. r
) )  ->  E. v  e.  ( ~P r  i^i 
Fin ) U. J  =  U. v )
130129exp32 631 . . . . . . . . . 10  |-  ( ( D  e.  ( CMet `  X )  /\  (
m : NN0 --> ( ~P
U. J  i^i  Fin )  /\  A. n  e. 
NN0  X  =  U_ y  e.  ( m `  n ) ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) ) )  ->  ( r  C_  J  ->  ( U. J  =  U. r  ->  E. v  e.  ( ~P r  i^i  Fin ) U. J  =  U. v ) ) )
13186, 130syl5 34 . . . . . . . . 9  |-  ( ( D  e.  ( CMet `  X )  /\  (
m : NN0 --> ( ~P
U. J  i^i  Fin )  /\  A. n  e. 
NN0  X  =  U_ y  e.  ( m `  n ) ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) ) )  ->  ( r  e.  ~P J  ->  ( U. J  =  U. r  ->  E. v  e.  ( ~P r  i^i  Fin ) U. J  =  U. v ) ) )
132131ralrimiv 2965 . . . . . . . 8  |-  ( ( D  e.  ( CMet `  X )  /\  (
m : NN0 --> ( ~P
U. J  i^i  Fin )  /\  A. n  e. 
NN0  X  =  U_ y  e.  ( m `  n ) ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) ) )  ->  A. r  e.  ~P  J ( U. J  =  U. r  ->  E. v  e.  ( ~P r  i^i  Fin ) U. J  =  U. v ) )
133132ex 450 . . . . . . 7  |-  ( D  e.  ( CMet `  X
)  ->  ( (
m : NN0 --> ( ~P
U. J  i^i  Fin )  /\  A. n  e. 
NN0  X  =  U_ y  e.  ( m `  n ) ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) )  ->  A. r  e.  ~P  J ( U. J  =  U. r  ->  E. v  e.  ( ~P r  i^i 
Fin ) U. J  =  U. v ) ) )
134133exlimdv 1861 . . . . . 6  |-  ( D  e.  ( CMet `  X
)  ->  ( E. m ( m : NN0 --> ( ~P U. J  i^i  Fin )  /\  A. n  e.  NN0  X  =  U_ y  e.  ( m `  n ) ( y ( ball `  D ) ( 1  /  ( 2 ^ n ) ) ) )  ->  A. r  e.  ~P  J ( U. J  =  U. r  ->  E. v  e.  ( ~P r  i^i  Fin ) U. J  =  U. v ) ) )
13585, 134syld 47 . . . . 5  |-  ( D  e.  ( CMet `  X
)  ->  ( D  e.  ( TotBnd `  X )  ->  A. r  e.  ~P  J ( U. J  =  U. r  ->  E. v  e.  ( ~P r  i^i 
Fin ) U. J  =  U. v ) ) )
136135imp 445 . . . 4  |-  ( ( D  e.  ( CMet `  X )  /\  D  e.  ( TotBnd `  X )
)  ->  A. r  e.  ~P  J ( U. J  =  U. r  ->  E. v  e.  ( ~P r  i^i  Fin ) U. J  =  U. v ) )
137 eqid 2622 . . . . 5  |-  U. J  =  U. J
138137iscmp 21191 . . . 4  |-  ( J  e.  Comp  <->  ( J  e. 
Top  /\  A. r  e.  ~P  J ( U. J  =  U. r  ->  E. v  e.  ( ~P r  i^i  Fin ) U. J  =  U. v ) ) )
1398, 136, 138sylanbrc 698 . . 3  |-  ( ( D  e.  ( CMet `  X )  /\  D  e.  ( TotBnd `  X )
)  ->  J  e.  Comp )
1404, 139jca 554 . 2  |-  ( ( D  e.  ( CMet `  X )  /\  D  e.  ( TotBnd `  X )
)  ->  ( D  e.  ( Met `  X
)  /\  J  e.  Comp ) )
1412, 140impbii 199 1  |-  ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  <->  ( D  e.  ( CMet `  X
)  /\  D  e.  ( TotBnd `  X )
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608   A.wral 2912   E.wrex 2913   _Vcvv 3200    i^i cin 3573    C_ wss 3574   ~Pcpw 4158   U.cuni 4436   U_ciun 4520   {copab 4712   ran crn 5115    Fn wfn 5883   -->wf 5884   -onto->wfo 5886   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   omcom 7065   Fincfn 7955   1c1 9937    / cdiv 10684   NNcn 11020   2c2 11070   NN0cn0 11292   RR+crp 11832   ^cexp 12860   *Metcxmt 19731   Metcme 19732   ballcbl 19733   MetOpencmopn 19736   Topctop 20698   Compccmp 21189   CMetcms 23052   TotBndctotbnd 33565
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ico 12181  df-icc 12182  df-fz 12327  df-fl 12593  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-rest 16083  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-top 20699  df-topon 20716  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lm 21033  df-haus 21119  df-cmp 21190  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-cfil 23053  df-cau 23054  df-cmet 23055  df-totbnd 33567
This theorem is referenced by:  rrnheibor  33636
  Copyright terms: Public domain W3C validator