Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  heiborlem5 Structured version   Visualization version   Unicode version

Theorem heiborlem5 33614
Description: Lemma for heibor 33620. The function  M is a set of point-and-radius pairs suitable for application to caubl 23106. (Contributed by Jeff Madsen, 23-Jan-2014.)
Hypotheses
Ref Expression
heibor.1  |-  J  =  ( MetOpen `  D )
heibor.3  |-  K  =  { u  |  -.  E. v  e.  ( ~P U  i^i  Fin )
u  C_  U. v }
heibor.4  |-  G  =  { <. y ,  n >.  |  ( n  e. 
NN0  /\  y  e.  ( F `  n )  /\  ( y B n )  e.  K
) }
heibor.5  |-  B  =  ( z  e.  X ,  m  e.  NN0  |->  ( z ( ball `  D ) ( 1  /  ( 2 ^ m ) ) ) )
heibor.6  |-  ( ph  ->  D  e.  ( CMet `  X ) )
heibor.7  |-  ( ph  ->  F : NN0 --> ( ~P X  i^i  Fin )
)
heibor.8  |-  ( ph  ->  A. n  e.  NN0  X  =  U_ y  e.  ( F `  n
) ( y B n ) )
heibor.9  |-  ( ph  ->  A. x  e.  G  ( ( T `  x ) G ( ( 2nd `  x
)  +  1 )  /\  ( ( B `
 x )  i^i  ( ( T `  x ) B ( ( 2nd `  x
)  +  1 ) ) )  e.  K
) )
heibor.10  |-  ( ph  ->  C G 0 )
heibor.11  |-  S  =  seq 0 ( T ,  ( m  e. 
NN0  |->  if ( m  =  0 ,  C ,  ( m  - 
1 ) ) ) )
heibor.12  |-  M  =  ( n  e.  NN  |->  <. ( S `  n
) ,  ( 3  /  ( 2 ^ n ) ) >.
)
Assertion
Ref Expression
heiborlem5  |-  ( ph  ->  M : NN --> ( X  X.  RR+ ) )
Distinct variable groups:    x, n, y, u, F    x, G    ph, x    m, n, u, v, x, y, z, D    m, M, u, x, y, z    T, m, n, x, y, z    B, n, u, v, y   
m, J, n, u, v, x, y, z    U, n, u, v, x, y, z    S, m, n, u, v, x, y, z    m, X, n, u, v, x, y, z    C, m, n, u, v, y   
n, K, x, y, z    x, B
Allowed substitution hints:    ph( y, z, v, u, m, n)    B( z, m)    C( x, z)    T( v, u)    U( m)    F( z, v, m)    G( y, z, v, u, m, n)    K( v, u, m)    M( v, n)

Proof of Theorem heiborlem5
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 nnnn0 11299 . . . . . 6  |-  ( k  e.  NN  ->  k  e.  NN0 )
2 inss1 3833 . . . . . . . . 9  |-  ( ~P X  i^i  Fin )  C_ 
~P X
3 heibor.7 . . . . . . . . . 10  |-  ( ph  ->  F : NN0 --> ( ~P X  i^i  Fin )
)
43ffvelrnda 6359 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  k )  e.  ( ~P X  i^i  Fin ) )
52, 4sseldi 3601 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  k )  e.  ~P X )
65elpwid 4170 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  k )  C_  X
)
7 heibor.1 . . . . . . . . 9  |-  J  =  ( MetOpen `  D )
8 heibor.3 . . . . . . . . 9  |-  K  =  { u  |  -.  E. v  e.  ( ~P U  i^i  Fin )
u  C_  U. v }
9 heibor.4 . . . . . . . . 9  |-  G  =  { <. y ,  n >.  |  ( n  e. 
NN0  /\  y  e.  ( F `  n )  /\  ( y B n )  e.  K
) }
10 heibor.5 . . . . . . . . 9  |-  B  =  ( z  e.  X ,  m  e.  NN0  |->  ( z ( ball `  D ) ( 1  /  ( 2 ^ m ) ) ) )
11 heibor.6 . . . . . . . . 9  |-  ( ph  ->  D  e.  ( CMet `  X ) )
12 heibor.8 . . . . . . . . 9  |-  ( ph  ->  A. n  e.  NN0  X  =  U_ y  e.  ( F `  n
) ( y B n ) )
13 heibor.9 . . . . . . . . 9  |-  ( ph  ->  A. x  e.  G  ( ( T `  x ) G ( ( 2nd `  x
)  +  1 )  /\  ( ( B `
 x )  i^i  ( ( T `  x ) B ( ( 2nd `  x
)  +  1 ) ) )  e.  K
) )
14 heibor.10 . . . . . . . . 9  |-  ( ph  ->  C G 0 )
15 heibor.11 . . . . . . . . 9  |-  S  =  seq 0 ( T ,  ( m  e. 
NN0  |->  if ( m  =  0 ,  C ,  ( m  - 
1 ) ) ) )
167, 8, 9, 10, 11, 3, 12, 13, 14, 15heiborlem4 33613 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( S `  k ) G k )
17 fvex 6201 . . . . . . . . . 10  |-  ( S `
 k )  e. 
_V
18 vex 3203 . . . . . . . . . 10  |-  k  e. 
_V
197, 8, 9, 17, 18heiborlem2 33611 . . . . . . . . 9  |-  ( ( S `  k ) G k  <->  ( k  e.  NN0  /\  ( S `
 k )  e.  ( F `  k
)  /\  ( ( S `  k ) B k )  e.  K ) )
2019simp2bi 1077 . . . . . . . 8  |-  ( ( S `  k ) G k  ->  ( S `  k )  e.  ( F `  k
) )
2116, 20syl 17 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( S `  k )  e.  ( F `  k ) )
226, 21sseldd 3604 . . . . . 6  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( S `  k )  e.  X
)
231, 22sylan2 491 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( S `
 k )  e.  X )
2423ralrimiva 2966 . . . 4  |-  ( ph  ->  A. k  e.  NN  ( S `  k )  e.  X )
25 fveq2 6191 . . . . . 6  |-  ( k  =  n  ->  ( S `  k )  =  ( S `  n ) )
2625eleq1d 2686 . . . . 5  |-  ( k  =  n  ->  (
( S `  k
)  e.  X  <->  ( S `  n )  e.  X
) )
2726cbvralv 3171 . . . 4  |-  ( A. k  e.  NN  ( S `  k )  e.  X  <->  A. n  e.  NN  ( S `  n )  e.  X )
2824, 27sylib 208 . . 3  |-  ( ph  ->  A. n  e.  NN  ( S `  n )  e.  X )
29 3re 11094 . . . . . . 7  |-  3  e.  RR
30 3pos 11114 . . . . . . 7  |-  0  <  3
3129, 30elrpii 11835 . . . . . 6  |-  3  e.  RR+
32 2nn 11185 . . . . . . . 8  |-  2  e.  NN
33 nnnn0 11299 . . . . . . . 8  |-  ( n  e.  NN  ->  n  e.  NN0 )
34 nnexpcl 12873 . . . . . . . 8  |-  ( ( 2  e.  NN  /\  n  e.  NN0 )  -> 
( 2 ^ n
)  e.  NN )
3532, 33, 34sylancr 695 . . . . . . 7  |-  ( n  e.  NN  ->  (
2 ^ n )  e.  NN )
3635nnrpd 11870 . . . . . 6  |-  ( n  e.  NN  ->  (
2 ^ n )  e.  RR+ )
37 rpdivcl 11856 . . . . . 6  |-  ( ( 3  e.  RR+  /\  (
2 ^ n )  e.  RR+ )  ->  (
3  /  ( 2 ^ n ) )  e.  RR+ )
3831, 36, 37sylancr 695 . . . . 5  |-  ( n  e.  NN  ->  (
3  /  ( 2 ^ n ) )  e.  RR+ )
39 opelxpi 5148 . . . . . 6  |-  ( ( ( S `  n
)  e.  X  /\  ( 3  /  (
2 ^ n ) )  e.  RR+ )  -> 
<. ( S `  n
) ,  ( 3  /  ( 2 ^ n ) ) >.  e.  ( X  X.  RR+ ) )
4039expcom 451 . . . . 5  |-  ( ( 3  /  ( 2 ^ n ) )  e.  RR+  ->  ( ( S `  n )  e.  X  ->  <. ( S `  n ) ,  ( 3  / 
( 2 ^ n
) ) >.  e.  ( X  X.  RR+ )
) )
4138, 40syl 17 . . . 4  |-  ( n  e.  NN  ->  (
( S `  n
)  e.  X  ->  <. ( S `  n
) ,  ( 3  /  ( 2 ^ n ) ) >.  e.  ( X  X.  RR+ ) ) )
4241ralimia 2950 . . 3  |-  ( A. n  e.  NN  ( S `  n )  e.  X  ->  A. n  e.  NN  <. ( S `  n ) ,  ( 3  /  ( 2 ^ n ) )
>.  e.  ( X  X.  RR+ ) )
4328, 42syl 17 . 2  |-  ( ph  ->  A. n  e.  NN  <.
( S `  n
) ,  ( 3  /  ( 2 ^ n ) ) >.  e.  ( X  X.  RR+ ) )
44 heibor.12 . . 3  |-  M  =  ( n  e.  NN  |->  <. ( S `  n
) ,  ( 3  /  ( 2 ^ n ) ) >.
)
4544fmpt 6381 . 2  |-  ( A. n  e.  NN  <. ( S `  n ) ,  ( 3  / 
( 2 ^ n
) ) >.  e.  ( X  X.  RR+ )  <->  M : NN --> ( X  X.  RR+ ) )
4643, 45sylib 208 1  |-  ( ph  ->  M : NN --> ( X  X.  RR+ ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   {cab 2608   A.wral 2912   E.wrex 2913    i^i cin 3573    C_ wss 3574   ifcif 4086   ~Pcpw 4158   <.cop 4183   U.cuni 4436   U_ciun 4520   class class class wbr 4653   {copab 4712    |-> cmpt 4729    X. cxp 5112   -->wf 5884   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   2ndc2nd 7167   Fincfn 7955   0cc0 9936   1c1 9937    + caddc 9939    - cmin 10266    / cdiv 10684   NNcn 11020   2c2 11070   3c3 11071   NN0cn0 11292   RR+crp 11832    seqcseq 12801   ^cexp 12860   ballcbl 19733   MetOpencmopn 19736   CMetcms 23052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-seq 12802  df-exp 12861
This theorem is referenced by:  heiborlem8  33617  heiborlem9  33618
  Copyright terms: Public domain W3C validator