Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  heiborlem3 Structured version   Visualization version   Unicode version

Theorem heiborlem3 33612
Description: Lemma for heibor 33620. Using countable choice ax-cc 9257, we have fixed in advance a collection of finite  2 ^ -u n nets  ( F `  n ) for  X (note that an  r-net is a set of points in  X whose  r -balls cover  X). The set  G is the subset of these points whose corresponding balls have no finite subcover (i.e. in the set  K). If the theorem was false, then  X would be in  K, and so some ball at each level would also be in  K. But we can say more than this; given a ball 
( y B n ) on level  n, since level  n  +  1 covers the space and thus also  (
y B n ), using heiborlem1 33610 there is a ball on the next level whose intersection with  ( y B n ) also has no finite subcover. Now since the set 
G is a countable union of finite sets, it is countable (which needs ax-cc 9257 via iunctb 9396), and so we can apply ax-cc 9257 to  G directly to get a function from  G to itself, which points from each ball in  K to a ball on the next level in  K, and such that the intersection between these balls is also in  K. (Contributed by Jeff Madsen, 18-Jan-2014.)
Hypotheses
Ref Expression
heibor.1  |-  J  =  ( MetOpen `  D )
heibor.3  |-  K  =  { u  |  -.  E. v  e.  ( ~P U  i^i  Fin )
u  C_  U. v }
heibor.4  |-  G  =  { <. y ,  n >.  |  ( n  e. 
NN0  /\  y  e.  ( F `  n )  /\  ( y B n )  e.  K
) }
heibor.5  |-  B  =  ( z  e.  X ,  m  e.  NN0  |->  ( z ( ball `  D ) ( 1  /  ( 2 ^ m ) ) ) )
heibor.6  |-  ( ph  ->  D  e.  ( CMet `  X ) )
heibor.7  |-  ( ph  ->  F : NN0 --> ( ~P X  i^i  Fin )
)
heibor.8  |-  ( ph  ->  A. n  e.  NN0  X  =  U_ y  e.  ( F `  n
) ( y B n ) )
Assertion
Ref Expression
heiborlem3  |-  ( ph  ->  E. g A. x  e.  G  ( (
g `  x ) G ( ( 2nd `  x )  +  1 )  /\  ( ( B `  x )  i^i  ( ( g `
 x ) B ( ( 2nd `  x
)  +  1 ) ) )  e.  K
) )
Distinct variable groups:    x, n, y, u, F    x, g, G    ph, g, x    g, m, n, u, v, y, z, D, x    B, g, n, u, v, y   
g, J, m, n, u, v, x, y, z    U, g, n, u, v, x, y, z   
g, X, m, n, u, v, x, y, z    g, K, n, x, y, z    x, B
Allowed substitution hints:    ph( y, z, v, u, m, n)    B( z, m)    U( m)    F( z, v, g, m)    G( y, z, v, u, m, n)    K( v, u, m)

Proof of Theorem heiborlem3
Dummy variable  t is distinct from all other variables.
StepHypRef Expression
1 nn0ex 11298 . . . . . 6  |-  NN0  e.  _V
2 fvex 6201 . . . . . . 7  |-  ( F `
 t )  e. 
_V
3 snex 4908 . . . . . . 7  |-  { t }  e.  _V
42, 3xpex 6962 . . . . . 6  |-  ( ( F `  t )  X.  { t } )  e.  _V
51, 4iunex 7147 . . . . 5  |-  U_ t  e.  NN0  ( ( F `
 t )  X. 
{ t } )  e.  _V
6 heibor.4 . . . . . . . . 9  |-  G  =  { <. y ,  n >.  |  ( n  e. 
NN0  /\  y  e.  ( F `  n )  /\  ( y B n )  e.  K
) }
76relopabi 5245 . . . . . . . 8  |-  Rel  G
8 1st2nd 7214 . . . . . . . 8  |-  ( ( Rel  G  /\  x  e.  G )  ->  x  =  <. ( 1st `  x
) ,  ( 2nd `  x ) >. )
97, 8mpan 706 . . . . . . 7  |-  ( x  e.  G  ->  x  =  <. ( 1st `  x
) ,  ( 2nd `  x ) >. )
109eleq1d 2686 . . . . . . . . . . 11  |-  ( x  e.  G  ->  (
x  e.  G  <->  <. ( 1st `  x ) ,  ( 2nd `  x )
>.  e.  G ) )
11 df-br 4654 . . . . . . . . . . 11  |-  ( ( 1st `  x ) G ( 2nd `  x
)  <->  <. ( 1st `  x
) ,  ( 2nd `  x ) >.  e.  G
)
1210, 11syl6bbr 278 . . . . . . . . . 10  |-  ( x  e.  G  ->  (
x  e.  G  <->  ( 1st `  x ) G ( 2nd `  x ) ) )
13 heibor.1 . . . . . . . . . . 11  |-  J  =  ( MetOpen `  D )
14 heibor.3 . . . . . . . . . . 11  |-  K  =  { u  |  -.  E. v  e.  ( ~P U  i^i  Fin )
u  C_  U. v }
15 fvex 6201 . . . . . . . . . . 11  |-  ( 1st `  x )  e.  _V
16 fvex 6201 . . . . . . . . . . 11  |-  ( 2nd `  x )  e.  _V
1713, 14, 6, 15, 16heiborlem2 33611 . . . . . . . . . 10  |-  ( ( 1st `  x ) G ( 2nd `  x
)  <->  ( ( 2nd `  x )  e.  NN0  /\  ( 1st `  x
)  e.  ( F `
 ( 2nd `  x
) )  /\  (
( 1st `  x
) B ( 2nd `  x ) )  e.  K ) )
1812, 17syl6bb 276 . . . . . . . . 9  |-  ( x  e.  G  ->  (
x  e.  G  <->  ( ( 2nd `  x )  e. 
NN0  /\  ( 1st `  x )  e.  ( F `  ( 2nd `  x ) )  /\  ( ( 1st `  x
) B ( 2nd `  x ) )  e.  K ) ) )
1918ibi 256 . . . . . . . 8  |-  ( x  e.  G  ->  (
( 2nd `  x
)  e.  NN0  /\  ( 1st `  x )  e.  ( F `  ( 2nd `  x ) )  /\  ( ( 1st `  x ) B ( 2nd `  x
) )  e.  K
) )
2016snid 4208 . . . . . . . . . . . 12  |-  ( 2nd `  x )  e.  {
( 2nd `  x
) }
21 opelxp 5146 . . . . . . . . . . . 12  |-  ( <.
( 1st `  x
) ,  ( 2nd `  x ) >.  e.  ( ( F `  ( 2nd `  x ) )  X.  { ( 2nd `  x ) } )  <-> 
( ( 1st `  x
)  e.  ( F `
 ( 2nd `  x
) )  /\  ( 2nd `  x )  e. 
{ ( 2nd `  x
) } ) )
2220, 21mpbiran2 954 . . . . . . . . . . 11  |-  ( <.
( 1st `  x
) ,  ( 2nd `  x ) >.  e.  ( ( F `  ( 2nd `  x ) )  X.  { ( 2nd `  x ) } )  <-> 
( 1st `  x
)  e.  ( F `
 ( 2nd `  x
) ) )
23 fveq2 6191 . . . . . . . . . . . . . 14  |-  ( t  =  ( 2nd `  x
)  ->  ( F `  t )  =  ( F `  ( 2nd `  x ) ) )
24 sneq 4187 . . . . . . . . . . . . . 14  |-  ( t  =  ( 2nd `  x
)  ->  { t }  =  { ( 2nd `  x ) } )
2523, 24xpeq12d 5140 . . . . . . . . . . . . 13  |-  ( t  =  ( 2nd `  x
)  ->  ( ( F `  t )  X.  { t } )  =  ( ( F `
 ( 2nd `  x
) )  X.  {
( 2nd `  x
) } ) )
2625eleq2d 2687 . . . . . . . . . . . 12  |-  ( t  =  ( 2nd `  x
)  ->  ( <. ( 1st `  x ) ,  ( 2nd `  x
) >.  e.  ( ( F `  t )  X.  { t } )  <->  <. ( 1st `  x
) ,  ( 2nd `  x ) >.  e.  ( ( F `  ( 2nd `  x ) )  X.  { ( 2nd `  x ) } ) ) )
2726rspcev 3309 . . . . . . . . . . 11  |-  ( ( ( 2nd `  x
)  e.  NN0  /\  <.
( 1st `  x
) ,  ( 2nd `  x ) >.  e.  ( ( F `  ( 2nd `  x ) )  X.  { ( 2nd `  x ) } ) )  ->  E. t  e.  NN0  <. ( 1st `  x
) ,  ( 2nd `  x ) >.  e.  ( ( F `  t
)  X.  { t } ) )
2822, 27sylan2br 493 . . . . . . . . . 10  |-  ( ( ( 2nd `  x
)  e.  NN0  /\  ( 1st `  x )  e.  ( F `  ( 2nd `  x ) ) )  ->  E. t  e.  NN0  <. ( 1st `  x
) ,  ( 2nd `  x ) >.  e.  ( ( F `  t
)  X.  { t } ) )
29 eliun 4524 . . . . . . . . . 10  |-  ( <.
( 1st `  x
) ,  ( 2nd `  x ) >.  e.  U_ t  e.  NN0  ( ( F `  t )  X.  { t } )  <->  E. t  e.  NN0  <.
( 1st `  x
) ,  ( 2nd `  x ) >.  e.  ( ( F `  t
)  X.  { t } ) )
3028, 29sylibr 224 . . . . . . . . 9  |-  ( ( ( 2nd `  x
)  e.  NN0  /\  ( 1st `  x )  e.  ( F `  ( 2nd `  x ) ) )  ->  <. ( 1st `  x ) ,  ( 2nd `  x
) >.  e.  U_ t  e.  NN0  ( ( F `
 t )  X. 
{ t } ) )
31303adant3 1081 . . . . . . . 8  |-  ( ( ( 2nd `  x
)  e.  NN0  /\  ( 1st `  x )  e.  ( F `  ( 2nd `  x ) )  /\  ( ( 1st `  x ) B ( 2nd `  x
) )  e.  K
)  ->  <. ( 1st `  x ) ,  ( 2nd `  x )
>.  e.  U_ t  e. 
NN0  ( ( F `
 t )  X. 
{ t } ) )
3219, 31syl 17 . . . . . . 7  |-  ( x  e.  G  ->  <. ( 1st `  x ) ,  ( 2nd `  x
) >.  e.  U_ t  e.  NN0  ( ( F `
 t )  X. 
{ t } ) )
339, 32eqeltrd 2701 . . . . . 6  |-  ( x  e.  G  ->  x  e.  U_ t  e.  NN0  ( ( F `  t )  X.  {
t } ) )
3433ssriv 3607 . . . . 5  |-  G  C_  U_ t  e.  NN0  (
( F `  t
)  X.  { t } )
35 ssdomg 8001 . . . . 5  |-  ( U_ t  e.  NN0  ( ( F `  t )  X.  { t } )  e.  _V  ->  ( G  C_  U_ t  e. 
NN0  ( ( F `
 t )  X. 
{ t } )  ->  G  ~<_  U_ t  e.  NN0  ( ( F `
 t )  X. 
{ t } ) ) )
365, 34, 35mp2 9 . . . 4  |-  G  ~<_  U_ t  e.  NN0  ( ( F `  t )  X.  { t } )
37 nn0ennn 12778 . . . . . . 7  |-  NN0  ~~  NN
38 nnenom 12779 . . . . . . 7  |-  NN  ~~  om
3937, 38entri 8010 . . . . . 6  |-  NN0  ~~  om
40 endom 7982 . . . . . 6  |-  ( NN0  ~~  om  ->  NN0  ~<_  om )
4139, 40ax-mp 5 . . . . 5  |-  NN0  ~<_  om
42 vex 3203 . . . . . . . 8  |-  t  e. 
_V
432, 42xpsnen 8044 . . . . . . 7  |-  ( ( F `  t )  X.  { t } )  ~~  ( F `
 t )
44 inss2 3834 . . . . . . . . 9  |-  ( ~P X  i^i  Fin )  C_ 
Fin
45 heibor.7 . . . . . . . . . 10  |-  ( ph  ->  F : NN0 --> ( ~P X  i^i  Fin )
)
4645ffvelrnda 6359 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  NN0 )  ->  ( F `  t )  e.  ( ~P X  i^i  Fin ) )
4744, 46sseldi 3601 . . . . . . . 8  |-  ( (
ph  /\  t  e.  NN0 )  ->  ( F `  t )  e.  Fin )
48 isfinite 8549 . . . . . . . . 9  |-  ( ( F `  t )  e.  Fin  <->  ( F `  t )  ~<  om )
49 sdomdom 7983 . . . . . . . . 9  |-  ( ( F `  t ) 
~<  om  ->  ( F `  t )  ~<_  om )
5048, 49sylbi 207 . . . . . . . 8  |-  ( ( F `  t )  e.  Fin  ->  ( F `  t )  ~<_  om )
5147, 50syl 17 . . . . . . 7  |-  ( (
ph  /\  t  e.  NN0 )  ->  ( F `  t )  ~<_  om )
52 endomtr 8014 . . . . . . 7  |-  ( ( ( ( F `  t )  X.  {
t } )  ~~  ( F `  t )  /\  ( F `  t )  ~<_  om )  ->  ( ( F `  t )  X.  {
t } )  ~<_  om )
5343, 51, 52sylancr 695 . . . . . 6  |-  ( (
ph  /\  t  e.  NN0 )  ->  ( ( F `  t )  X.  { t } )  ~<_  om )
5453ralrimiva 2966 . . . . 5  |-  ( ph  ->  A. t  e.  NN0  ( ( F `  t )  X.  {
t } )  ~<_  om )
55 iunctb 9396 . . . . 5  |-  ( ( NN0  ~<_  om  /\  A. t  e.  NN0  ( ( F `
 t )  X. 
{ t } )  ~<_  om )  ->  U_ t  e.  NN0  ( ( F `
 t )  X. 
{ t } )  ~<_  om )
5641, 54, 55sylancr 695 . . . 4  |-  ( ph  ->  U_ t  e.  NN0  ( ( F `  t )  X.  {
t } )  ~<_  om )
57 domtr 8009 . . . 4  |-  ( ( G  ~<_  U_ t  e.  NN0  ( ( F `  t )  X.  {
t } )  /\  U_ t  e.  NN0  (
( F `  t
)  X.  { t } )  ~<_  om )  ->  G  ~<_  om )
5836, 56, 57sylancr 695 . . 3  |-  ( ph  ->  G  ~<_  om )
5919simp1d 1073 . . . . . . . . 9  |-  ( x  e.  G  ->  ( 2nd `  x )  e. 
NN0 )
60 peano2nn0 11333 . . . . . . . . 9  |-  ( ( 2nd `  x )  e.  NN0  ->  ( ( 2nd `  x )  +  1 )  e. 
NN0 )
6159, 60syl 17 . . . . . . . 8  |-  ( x  e.  G  ->  (
( 2nd `  x
)  +  1 )  e.  NN0 )
62 ffvelrn 6357 . . . . . . . 8  |-  ( ( F : NN0 --> ( ~P X  i^i  Fin )  /\  ( ( 2nd `  x
)  +  1 )  e.  NN0 )  -> 
( F `  (
( 2nd `  x
)  +  1 ) )  e.  ( ~P X  i^i  Fin )
)
6345, 61, 62syl2an 494 . . . . . . 7  |-  ( (
ph  /\  x  e.  G )  ->  ( F `  ( ( 2nd `  x )  +  1 ) )  e.  ( ~P X  i^i  Fin ) )
6444, 63sseldi 3601 . . . . . 6  |-  ( (
ph  /\  x  e.  G )  ->  ( F `  ( ( 2nd `  x )  +  1 ) )  e. 
Fin )
65 iunin2 4584 . . . . . . . 8  |-  U_ t  e.  ( F `  (
( 2nd `  x
)  +  1 ) ) ( ( B `
 x )  i^i  ( t B ( ( 2nd `  x
)  +  1 ) ) )  =  ( ( B `  x
)  i^i  U_ t  e.  ( F `  (
( 2nd `  x
)  +  1 ) ) ( t B ( ( 2nd `  x
)  +  1 ) ) )
66 heibor.8 . . . . . . . . . . 11  |-  ( ph  ->  A. n  e.  NN0  X  =  U_ y  e.  ( F `  n
) ( y B n ) )
67 oveq1 6657 . . . . . . . . . . . . . . . 16  |-  ( y  =  t  ->  (
y B n )  =  ( t B n ) )
6867cbviunv 4559 . . . . . . . . . . . . . . 15  |-  U_ y  e.  ( F `  n
) ( y B n )  =  U_ t  e.  ( F `  n ) ( t B n )
69 fveq2 6191 . . . . . . . . . . . . . . . 16  |-  ( n  =  ( ( 2nd `  x )  +  1 )  ->  ( F `  n )  =  ( F `  ( ( 2nd `  x )  +  1 ) ) )
7069iuneq1d 4545 . . . . . . . . . . . . . . 15  |-  ( n  =  ( ( 2nd `  x )  +  1 )  ->  U_ t  e.  ( F `  n
) ( t B n )  =  U_ t  e.  ( F `  ( ( 2nd `  x
)  +  1 ) ) ( t B n ) )
7168, 70syl5eq 2668 . . . . . . . . . . . . . 14  |-  ( n  =  ( ( 2nd `  x )  +  1 )  ->  U_ y  e.  ( F `  n
) ( y B n )  =  U_ t  e.  ( F `  ( ( 2nd `  x
)  +  1 ) ) ( t B n ) )
72 oveq2 6658 . . . . . . . . . . . . . . 15  |-  ( n  =  ( ( 2nd `  x )  +  1 )  ->  ( t B n )  =  ( t B ( ( 2nd `  x
)  +  1 ) ) )
7372iuneq2d 4547 . . . . . . . . . . . . . 14  |-  ( n  =  ( ( 2nd `  x )  +  1 )  ->  U_ t  e.  ( F `  (
( 2nd `  x
)  +  1 ) ) ( t B n )  =  U_ t  e.  ( F `  ( ( 2nd `  x
)  +  1 ) ) ( t B ( ( 2nd `  x
)  +  1 ) ) )
7471, 73eqtrd 2656 . . . . . . . . . . . . 13  |-  ( n  =  ( ( 2nd `  x )  +  1 )  ->  U_ y  e.  ( F `  n
) ( y B n )  =  U_ t  e.  ( F `  ( ( 2nd `  x
)  +  1 ) ) ( t B ( ( 2nd `  x
)  +  1 ) ) )
7574eqeq2d 2632 . . . . . . . . . . . 12  |-  ( n  =  ( ( 2nd `  x )  +  1 )  ->  ( X  =  U_ y  e.  ( F `  n ) ( y B n )  <->  X  =  U_ t  e.  ( F `  ( ( 2nd `  x
)  +  1 ) ) ( t B ( ( 2nd `  x
)  +  1 ) ) ) )
7675rspccva 3308 . . . . . . . . . . 11  |-  ( ( A. n  e.  NN0  X  =  U_ y  e.  ( F `  n
) ( y B n )  /\  (
( 2nd `  x
)  +  1 )  e.  NN0 )  ->  X  =  U_ t  e.  ( F `  (
( 2nd `  x
)  +  1 ) ) ( t B ( ( 2nd `  x
)  +  1 ) ) )
7766, 61, 76syl2an 494 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  G )  ->  X  =  U_ t  e.  ( F `  ( ( 2nd `  x )  +  1 ) ) ( t B ( ( 2nd `  x
)  +  1 ) ) )
7877ineq2d 3814 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  G )  ->  (
( B `  x
)  i^i  X )  =  ( ( B `
 x )  i^i  U_ t  e.  ( F `  ( ( 2nd `  x )  +  1 ) ) ( t B ( ( 2nd `  x )  +  1 ) ) ) )
799fveq2d 6195 . . . . . . . . . . . . . 14  |-  ( x  e.  G  ->  ( B `  x )  =  ( B `  <. ( 1st `  x
) ,  ( 2nd `  x ) >. )
)
80 df-ov 6653 . . . . . . . . . . . . . 14  |-  ( ( 1st `  x ) B ( 2nd `  x
) )  =  ( B `  <. ( 1st `  x ) ,  ( 2nd `  x
) >. )
8179, 80syl6eqr 2674 . . . . . . . . . . . . 13  |-  ( x  e.  G  ->  ( B `  x )  =  ( ( 1st `  x ) B ( 2nd `  x ) ) )
8281adantl 482 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  G )  ->  ( B `  x )  =  ( ( 1st `  x ) B ( 2nd `  x ) ) )
83 inss1 3833 . . . . . . . . . . . . . . . 16  |-  ( ~P X  i^i  Fin )  C_ 
~P X
84 ffvelrn 6357 . . . . . . . . . . . . . . . . 17  |-  ( ( F : NN0 --> ( ~P X  i^i  Fin )  /\  ( 2nd `  x
)  e.  NN0 )  ->  ( F `  ( 2nd `  x ) )  e.  ( ~P X  i^i  Fin ) )
8545, 59, 84syl2an 494 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  G )  ->  ( F `  ( 2nd `  x ) )  e.  ( ~P X  i^i  Fin ) )
8683, 85sseldi 3601 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  G )  ->  ( F `  ( 2nd `  x ) )  e. 
~P X )
8786elpwid 4170 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  G )  ->  ( F `  ( 2nd `  x ) )  C_  X )
8819simp2d 1074 . . . . . . . . . . . . . . 15  |-  ( x  e.  G  ->  ( 1st `  x )  e.  ( F `  ( 2nd `  x ) ) )
8988adantl 482 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  G )  ->  ( 1st `  x )  e.  ( F `  ( 2nd `  x ) ) )
9087, 89sseldd 3604 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  G )  ->  ( 1st `  x )  e.  X )
9159adantl 482 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  G )  ->  ( 2nd `  x )  e. 
NN0 )
92 oveq1 6657 . . . . . . . . . . . . . 14  |-  ( z  =  ( 1st `  x
)  ->  ( z
( ball `  D )
( 1  /  (
2 ^ m ) ) )  =  ( ( 1st `  x
) ( ball `  D
) ( 1  / 
( 2 ^ m
) ) ) )
93 oveq2 6658 . . . . . . . . . . . . . . . 16  |-  ( m  =  ( 2nd `  x
)  ->  ( 2 ^ m )  =  ( 2 ^ ( 2nd `  x ) ) )
9493oveq2d 6666 . . . . . . . . . . . . . . 15  |-  ( m  =  ( 2nd `  x
)  ->  ( 1  /  ( 2 ^ m ) )  =  ( 1  /  (
2 ^ ( 2nd `  x ) ) ) )
9594oveq2d 6666 . . . . . . . . . . . . . 14  |-  ( m  =  ( 2nd `  x
)  ->  ( ( 1st `  x ) (
ball `  D )
( 1  /  (
2 ^ m ) ) )  =  ( ( 1st `  x
) ( ball `  D
) ( 1  / 
( 2 ^ ( 2nd `  x ) ) ) ) )
96 heibor.5 . . . . . . . . . . . . . 14  |-  B  =  ( z  e.  X ,  m  e.  NN0  |->  ( z ( ball `  D ) ( 1  /  ( 2 ^ m ) ) ) )
97 ovex 6678 . . . . . . . . . . . . . 14  |-  ( ( 1st `  x ) ( ball `  D
) ( 1  / 
( 2 ^ ( 2nd `  x ) ) ) )  e.  _V
9892, 95, 96, 97ovmpt2 6796 . . . . . . . . . . . . 13  |-  ( ( ( 1st `  x
)  e.  X  /\  ( 2nd `  x )  e.  NN0 )  -> 
( ( 1st `  x
) B ( 2nd `  x ) )  =  ( ( 1st `  x
) ( ball `  D
) ( 1  / 
( 2 ^ ( 2nd `  x ) ) ) ) )
9990, 91, 98syl2anc 693 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  G )  ->  (
( 1st `  x
) B ( 2nd `  x ) )  =  ( ( 1st `  x
) ( ball `  D
) ( 1  / 
( 2 ^ ( 2nd `  x ) ) ) ) )
10082, 99eqtrd 2656 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  G )  ->  ( B `  x )  =  ( ( 1st `  x ) ( ball `  D ) ( 1  /  ( 2 ^ ( 2nd `  x
) ) ) ) )
101 heibor.6 . . . . . . . . . . . . . . 15  |-  ( ph  ->  D  e.  ( CMet `  X ) )
102 cmetmet 23084 . . . . . . . . . . . . . . 15  |-  ( D  e.  ( CMet `  X
)  ->  D  e.  ( Met `  X ) )
103101, 102syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  D  e.  ( Met `  X ) )
104 metxmet 22139 . . . . . . . . . . . . . 14  |-  ( D  e.  ( Met `  X
)  ->  D  e.  ( *Met `  X
) )
105103, 104syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  D  e.  ( *Met `  X ) )
106105adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  G )  ->  D  e.  ( *Met `  X ) )
107 2nn 11185 . . . . . . . . . . . . . . . 16  |-  2  e.  NN
108 nnexpcl 12873 . . . . . . . . . . . . . . . 16  |-  ( ( 2  e.  NN  /\  ( 2nd `  x )  e.  NN0 )  -> 
( 2 ^ ( 2nd `  x ) )  e.  NN )
109107, 91, 108sylancr 695 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  G )  ->  (
2 ^ ( 2nd `  x ) )  e.  NN )
110109nnrpd 11870 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  G )  ->  (
2 ^ ( 2nd `  x ) )  e.  RR+ )
111110rpreccld 11882 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  G )  ->  (
1  /  ( 2 ^ ( 2nd `  x
) ) )  e.  RR+ )
112111rpxrd 11873 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  G )  ->  (
1  /  ( 2 ^ ( 2nd `  x
) ) )  e. 
RR* )
113 blssm 22223 . . . . . . . . . . . 12  |-  ( ( D  e.  ( *Met `  X )  /\  ( 1st `  x
)  e.  X  /\  ( 1  /  (
2 ^ ( 2nd `  x ) ) )  e.  RR* )  ->  (
( 1st `  x
) ( ball `  D
) ( 1  / 
( 2 ^ ( 2nd `  x ) ) ) )  C_  X
)
114106, 90, 112, 113syl3anc 1326 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  G )  ->  (
( 1st `  x
) ( ball `  D
) ( 1  / 
( 2 ^ ( 2nd `  x ) ) ) )  C_  X
)
115100, 114eqsstrd 3639 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  G )  ->  ( B `  x )  C_  X )
116 df-ss 3588 . . . . . . . . . 10  |-  ( ( B `  x ) 
C_  X  <->  ( ( B `  x )  i^i  X )  =  ( B `  x ) )
117115, 116sylib 208 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  G )  ->  (
( B `  x
)  i^i  X )  =  ( B `  x ) )
11878, 117eqtr3d 2658 . . . . . . . 8  |-  ( (
ph  /\  x  e.  G )  ->  (
( B `  x
)  i^i  U_ t  e.  ( F `  (
( 2nd `  x
)  +  1 ) ) ( t B ( ( 2nd `  x
)  +  1 ) ) )  =  ( B `  x ) )
11965, 118syl5eq 2668 . . . . . . 7  |-  ( (
ph  /\  x  e.  G )  ->  U_ t  e.  ( F `  (
( 2nd `  x
)  +  1 ) ) ( ( B `
 x )  i^i  ( t B ( ( 2nd `  x
)  +  1 ) ) )  =  ( B `  x ) )
120 eqimss2 3658 . . . . . . 7  |-  ( U_ t  e.  ( F `  ( ( 2nd `  x
)  +  1 ) ) ( ( B `
 x )  i^i  ( t B ( ( 2nd `  x
)  +  1 ) ) )  =  ( B `  x )  ->  ( B `  x )  C_  U_ t  e.  ( F `  (
( 2nd `  x
)  +  1 ) ) ( ( B `
 x )  i^i  ( t B ( ( 2nd `  x
)  +  1 ) ) ) )
121119, 120syl 17 . . . . . 6  |-  ( (
ph  /\  x  e.  G )  ->  ( B `  x )  C_ 
U_ t  e.  ( F `  ( ( 2nd `  x )  +  1 ) ) ( ( B `  x )  i^i  (
t B ( ( 2nd `  x )  +  1 ) ) ) )
12219simp3d 1075 . . . . . . . 8  |-  ( x  e.  G  ->  (
( 1st `  x
) B ( 2nd `  x ) )  e.  K )
12381, 122eqeltrd 2701 . . . . . . 7  |-  ( x  e.  G  ->  ( B `  x )  e.  K )
124123adantl 482 . . . . . 6  |-  ( (
ph  /\  x  e.  G )  ->  ( B `  x )  e.  K )
125 fvex 6201 . . . . . . . 8  |-  ( B `
 x )  e. 
_V
126125inex1 4799 . . . . . . 7  |-  ( ( B `  x )  i^i  ( t B ( ( 2nd `  x
)  +  1 ) ) )  e.  _V
12713, 14, 126heiborlem1 33610 . . . . . 6  |-  ( ( ( F `  (
( 2nd `  x
)  +  1 ) )  e.  Fin  /\  ( B `  x ) 
C_  U_ t  e.  ( F `  ( ( 2nd `  x )  +  1 ) ) ( ( B `  x )  i^i  (
t B ( ( 2nd `  x )  +  1 ) ) )  /\  ( B `
 x )  e.  K )  ->  E. t  e.  ( F `  (
( 2nd `  x
)  +  1 ) ) ( ( B `
 x )  i^i  ( t B ( ( 2nd `  x
)  +  1 ) ) )  e.  K
)
12864, 121, 124, 127syl3anc 1326 . . . . 5  |-  ( (
ph  /\  x  e.  G )  ->  E. t  e.  ( F `  (
( 2nd `  x
)  +  1 ) ) ( ( B `
 x )  i^i  ( t B ( ( 2nd `  x
)  +  1 ) ) )  e.  K
)
12983, 63sseldi 3601 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  G )  ->  ( F `  ( ( 2nd `  x )  +  1 ) )  e. 
~P X )
130129elpwid 4170 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  G )  ->  ( F `  ( ( 2nd `  x )  +  1 ) )  C_  X )
13113mopnuni 22246 . . . . . . . . . . . . 13  |-  ( D  e.  ( *Met `  X )  ->  X  =  U. J )
132105, 131syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  X  =  U. J
)
133132adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  G )  ->  X  =  U. J )
134130, 133sseqtrd 3641 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  G )  ->  ( F `  ( ( 2nd `  x )  +  1 ) )  C_  U. J )
135134sselda 3603 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  G )  /\  t  e.  ( F `  (
( 2nd `  x
)  +  1 ) ) )  ->  t  e.  U. J )
136135adantrr 753 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  G )  /\  (
t  e.  ( F `
 ( ( 2nd `  x )  +  1 ) )  /\  (
( B `  x
)  i^i  ( t B ( ( 2nd `  x )  +  1 ) ) )  e.  K ) )  -> 
t  e.  U. J
)
13761adantl 482 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  G )  ->  (
( 2nd `  x
)  +  1 )  e.  NN0 )
138 id 22 . . . . . . . . . 10  |-  ( t  e.  ( F `  ( ( 2nd `  x
)  +  1 ) )  ->  t  e.  ( F `  ( ( 2nd `  x )  +  1 ) ) )
139 snfi 8038 . . . . . . . . . . . 12  |-  { ( t B ( ( 2nd `  x )  +  1 ) ) }  e.  Fin
140 inss2 3834 . . . . . . . . . . . . 13  |-  ( ( B `  x )  i^i  ( t B ( ( 2nd `  x
)  +  1 ) ) )  C_  (
t B ( ( 2nd `  x )  +  1 ) )
141 ovex 6678 . . . . . . . . . . . . . . 15  |-  ( t B ( ( 2nd `  x )  +  1 ) )  e.  _V
142141unisn 4451 . . . . . . . . . . . . . 14  |-  U. {
( t B ( ( 2nd `  x
)  +  1 ) ) }  =  ( t B ( ( 2nd `  x )  +  1 ) )
143 uniiun 4573 . . . . . . . . . . . . . 14  |-  U. {
( t B ( ( 2nd `  x
)  +  1 ) ) }  =  U_ g  e.  { (
t B ( ( 2nd `  x )  +  1 ) ) } g
144142, 143eqtr3i 2646 . . . . . . . . . . . . 13  |-  ( t B ( ( 2nd `  x )  +  1 ) )  =  U_ g  e.  { (
t B ( ( 2nd `  x )  +  1 ) ) } g
145140, 144sseqtri 3637 . . . . . . . . . . . 12  |-  ( ( B `  x )  i^i  ( t B ( ( 2nd `  x
)  +  1 ) ) )  C_  U_ g  e.  { ( t B ( ( 2nd `  x
)  +  1 ) ) } g
146 vex 3203 . . . . . . . . . . . . 13  |-  g  e. 
_V
14713, 14, 146heiborlem1 33610 . . . . . . . . . . . 12  |-  ( ( { ( t B ( ( 2nd `  x
)  +  1 ) ) }  e.  Fin  /\  ( ( B `  x )  i^i  (
t B ( ( 2nd `  x )  +  1 ) ) )  C_  U_ g  e. 
{ ( t B ( ( 2nd `  x
)  +  1 ) ) } g  /\  ( ( B `  x )  i^i  (
t B ( ( 2nd `  x )  +  1 ) ) )  e.  K )  ->  E. g  e.  {
( t B ( ( 2nd `  x
)  +  1 ) ) } g  e.  K )
148139, 145, 147mp3an12 1414 . . . . . . . . . . 11  |-  ( ( ( B `  x
)  i^i  ( t B ( ( 2nd `  x )  +  1 ) ) )  e.  K  ->  E. g  e.  { ( t B ( ( 2nd `  x
)  +  1 ) ) } g  e.  K )
149 eleq1 2689 . . . . . . . . . . . 12  |-  ( g  =  ( t B ( ( 2nd `  x
)  +  1 ) )  ->  ( g  e.  K  <->  ( t B ( ( 2nd `  x
)  +  1 ) )  e.  K ) )
150141, 149rexsn 4223 . . . . . . . . . . 11  |-  ( E. g  e.  { ( t B ( ( 2nd `  x )  +  1 ) ) } g  e.  K  <->  ( t B ( ( 2nd `  x )  +  1 ) )  e.  K )
151148, 150sylib 208 . . . . . . . . . 10  |-  ( ( ( B `  x
)  i^i  ( t B ( ( 2nd `  x )  +  1 ) ) )  e.  K  ->  ( t B ( ( 2nd `  x )  +  1 ) )  e.  K
)
152 ovex 6678 . . . . . . . . . . . 12  |-  ( ( 2nd `  x )  +  1 )  e. 
_V
15313, 14, 6, 42, 152heiborlem2 33611 . . . . . . . . . . 11  |-  ( t G ( ( 2nd `  x )  +  1 )  <->  ( ( ( 2nd `  x )  +  1 )  e. 
NN0  /\  t  e.  ( F `  ( ( 2nd `  x )  +  1 ) )  /\  ( t B ( ( 2nd `  x
)  +  1 ) )  e.  K ) )
154153biimpri 218 . . . . . . . . . 10  |-  ( ( ( ( 2nd `  x
)  +  1 )  e.  NN0  /\  t  e.  ( F `  (
( 2nd `  x
)  +  1 ) )  /\  ( t B ( ( 2nd `  x )  +  1 ) )  e.  K
)  ->  t G
( ( 2nd `  x
)  +  1 ) )
155137, 138, 151, 154syl3an 1368 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  G )  /\  t  e.  ( F `  (
( 2nd `  x
)  +  1 ) )  /\  ( ( B `  x )  i^i  ( t B ( ( 2nd `  x
)  +  1 ) ) )  e.  K
)  ->  t G
( ( 2nd `  x
)  +  1 ) )
1561553expb 1266 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  G )  /\  (
t  e.  ( F `
 ( ( 2nd `  x )  +  1 ) )  /\  (
( B `  x
)  i^i  ( t B ( ( 2nd `  x )  +  1 ) ) )  e.  K ) )  -> 
t G ( ( 2nd `  x )  +  1 ) )
157 simprr 796 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  G )  /\  (
t  e.  ( F `
 ( ( 2nd `  x )  +  1 ) )  /\  (
( B `  x
)  i^i  ( t B ( ( 2nd `  x )  +  1 ) ) )  e.  K ) )  -> 
( ( B `  x )  i^i  (
t B ( ( 2nd `  x )  +  1 ) ) )  e.  K )
158136, 156, 157jca32 558 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  G )  /\  (
t  e.  ( F `
 ( ( 2nd `  x )  +  1 ) )  /\  (
( B `  x
)  i^i  ( t B ( ( 2nd `  x )  +  1 ) ) )  e.  K ) )  -> 
( t  e.  U. J  /\  ( t G ( ( 2nd `  x
)  +  1 )  /\  ( ( B `
 x )  i^i  ( t B ( ( 2nd `  x
)  +  1 ) ) )  e.  K
) ) )
159158ex 450 . . . . . 6  |-  ( (
ph  /\  x  e.  G )  ->  (
( t  e.  ( F `  ( ( 2nd `  x )  +  1 ) )  /\  ( ( B `
 x )  i^i  ( t B ( ( 2nd `  x
)  +  1 ) ) )  e.  K
)  ->  ( t  e.  U. J  /\  (
t G ( ( 2nd `  x )  +  1 )  /\  ( ( B `  x )  i^i  (
t B ( ( 2nd `  x )  +  1 ) ) )  e.  K ) ) ) )
160159reximdv2 3014 . . . . 5  |-  ( (
ph  /\  x  e.  G )  ->  ( E. t  e.  ( F `  ( ( 2nd `  x )  +  1 ) ) ( ( B `  x
)  i^i  ( t B ( ( 2nd `  x )  +  1 ) ) )  e.  K  ->  E. t  e.  U. J ( t G ( ( 2nd `  x )  +  1 )  /\  ( ( B `  x )  i^i  ( t B ( ( 2nd `  x
)  +  1 ) ) )  e.  K
) ) )
161128, 160mpd 15 . . . 4  |-  ( (
ph  /\  x  e.  G )  ->  E. t  e.  U. J ( t G ( ( 2nd `  x )  +  1 )  /\  ( ( B `  x )  i^i  ( t B ( ( 2nd `  x
)  +  1 ) ) )  e.  K
) )
162161ralrimiva 2966 . . 3  |-  ( ph  ->  A. x  e.  G  E. t  e.  U. J
( t G ( ( 2nd `  x
)  +  1 )  /\  ( ( B `
 x )  i^i  ( t B ( ( 2nd `  x
)  +  1 ) ) )  e.  K
) )
163 fvex 6201 . . . . . 6  |-  ( MetOpen `  D )  e.  _V
16413, 163eqeltri 2697 . . . . 5  |-  J  e. 
_V
165164uniex 6953 . . . 4  |-  U. J  e.  _V
166 breq1 4656 . . . . 5  |-  ( t  =  ( g `  x )  ->  (
t G ( ( 2nd `  x )  +  1 )  <->  ( g `  x ) G ( ( 2nd `  x
)  +  1 ) ) )
167 oveq1 6657 . . . . . . 7  |-  ( t  =  ( g `  x )  ->  (
t B ( ( 2nd `  x )  +  1 ) )  =  ( ( g `
 x ) B ( ( 2nd `  x
)  +  1 ) ) )
168167ineq2d 3814 . . . . . 6  |-  ( t  =  ( g `  x )  ->  (
( B `  x
)  i^i  ( t B ( ( 2nd `  x )  +  1 ) ) )  =  ( ( B `  x )  i^i  (
( g `  x
) B ( ( 2nd `  x )  +  1 ) ) ) )
169168eleq1d 2686 . . . . 5  |-  ( t  =  ( g `  x )  ->  (
( ( B `  x )  i^i  (
t B ( ( 2nd `  x )  +  1 ) ) )  e.  K  <->  ( ( B `  x )  i^i  ( ( g `  x ) B ( ( 2nd `  x
)  +  1 ) ) )  e.  K
) )
170166, 169anbi12d 747 . . . 4  |-  ( t  =  ( g `  x )  ->  (
( t G ( ( 2nd `  x
)  +  1 )  /\  ( ( B `
 x )  i^i  ( t B ( ( 2nd `  x
)  +  1 ) ) )  e.  K
)  <->  ( ( g `
 x ) G ( ( 2nd `  x
)  +  1 )  /\  ( ( B `
 x )  i^i  ( ( g `  x ) B ( ( 2nd `  x
)  +  1 ) ) )  e.  K
) ) )
171165, 170axcc4dom 9263 . . 3  |-  ( ( G  ~<_  om  /\  A. x  e.  G  E. t  e.  U. J ( t G ( ( 2nd `  x )  +  1 )  /\  ( ( B `  x )  i^i  ( t B ( ( 2nd `  x
)  +  1 ) ) )  e.  K
) )  ->  E. g
( g : G --> U. J  /\  A. x  e.  G  ( (
g `  x ) G ( ( 2nd `  x )  +  1 )  /\  ( ( B `  x )  i^i  ( ( g `
 x ) B ( ( 2nd `  x
)  +  1 ) ) )  e.  K
) ) )
17258, 162, 171syl2anc 693 . 2  |-  ( ph  ->  E. g ( g : G --> U. J  /\  A. x  e.  G  ( ( g `  x ) G ( ( 2nd `  x
)  +  1 )  /\  ( ( B `
 x )  i^i  ( ( g `  x ) B ( ( 2nd `  x
)  +  1 ) ) )  e.  K
) ) )
173 exsimpr 1796 . 2  |-  ( E. g ( g : G --> U. J  /\  A. x  e.  G  (
( g `  x
) G ( ( 2nd `  x )  +  1 )  /\  ( ( B `  x )  i^i  (
( g `  x
) B ( ( 2nd `  x )  +  1 ) ) )  e.  K ) )  ->  E. g A. x  e.  G  ( ( g `  x ) G ( ( 2nd `  x
)  +  1 )  /\  ( ( B `
 x )  i^i  ( ( g `  x ) B ( ( 2nd `  x
)  +  1 ) ) )  e.  K
) )
174172, 173syl 17 1  |-  ( ph  ->  E. g A. x  e.  G  ( (
g `  x ) G ( ( 2nd `  x )  +  1 )  /\  ( ( B `  x )  i^i  ( ( g `
 x ) B ( ( 2nd `  x
)  +  1 ) ) )  e.  K
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608   A.wral 2912   E.wrex 2913   _Vcvv 3200    i^i cin 3573    C_ wss 3574   ~Pcpw 4158   {csn 4177   <.cop 4183   U.cuni 4436   U_ciun 4520   class class class wbr 4653   {copab 4712    X. cxp 5112   Rel wrel 5119   -->wf 5884   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   omcom 7065   1stc1st 7166   2ndc2nd 7167    ~~ cen 7952    ~<_ cdom 7953    ~< csdm 7954   Fincfn 7955   1c1 9937    + caddc 9939   RR*cxr 10073    / cdiv 10684   NNcn 11020   2c2 11070   NN0cn0 11292   ^cexp 12860   *Metcxmt 19731   Metcme 19732   ballcbl 19733   MetOpencmopn 19736   CMetcms 23052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-seq 12802  df-exp 12861  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-bases 20750  df-cmet 23055
This theorem is referenced by:  heiborlem10  33619
  Copyright terms: Public domain W3C validator