MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlne2 Structured version   Visualization version   Unicode version

Theorem hlne2 25501
Description: The half-line relation implies inequality. (Contributed by Thierry Arnoux, 22-Feb-2020.)
Hypotheses
Ref Expression
ishlg.p  |-  P  =  ( Base `  G
)
ishlg.i  |-  I  =  (Itv `  G )
ishlg.k  |-  K  =  (hlG `  G )
ishlg.a  |-  ( ph  ->  A  e.  P )
ishlg.b  |-  ( ph  ->  B  e.  P )
ishlg.c  |-  ( ph  ->  C  e.  P )
ishlg.g  |-  ( ph  ->  G  e.  V )
hlcomd.1  |-  ( ph  ->  A ( K `  C ) B )
Assertion
Ref Expression
hlne2  |-  ( ph  ->  B  =/=  C )

Proof of Theorem hlne2
StepHypRef Expression
1 hlcomd.1 . . 3  |-  ( ph  ->  A ( K `  C ) B )
2 ishlg.p . . . 4  |-  P  =  ( Base `  G
)
3 ishlg.i . . . 4  |-  I  =  (Itv `  G )
4 ishlg.k . . . 4  |-  K  =  (hlG `  G )
5 ishlg.a . . . 4  |-  ( ph  ->  A  e.  P )
6 ishlg.b . . . 4  |-  ( ph  ->  B  e.  P )
7 ishlg.c . . . 4  |-  ( ph  ->  C  e.  P )
8 ishlg.g . . . 4  |-  ( ph  ->  G  e.  V )
92, 3, 4, 5, 6, 7, 8ishlg 25497 . . 3  |-  ( ph  ->  ( A ( K `
 C ) B  <-> 
( A  =/=  C  /\  B  =/=  C  /\  ( A  e.  ( C I B )  \/  B  e.  ( C I A ) ) ) ) )
101, 9mpbid 222 . 2  |-  ( ph  ->  ( A  =/=  C  /\  B  =/=  C  /\  ( A  e.  ( C I B )  \/  B  e.  ( C I A ) ) ) )
1110simp2d 1074 1  |-  ( ph  ->  B  =/=  C )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 383    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857  Itvcitv 25335  hlGchlg 25495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-hlg 25496
This theorem is referenced by:  hltr  25505  opphllem5  25643  hlpasch  25648  colhp  25662  iscgra1  25702  cgrane3  25706  cgrane4  25707  inaghl  25731
  Copyright terms: Public domain W3C validator