MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opphllem5 Structured version   Visualization version   Unicode version

Theorem opphllem5 25643
Description: Second part of Lemma 9.4 of [Schwabhauser] p. 68. (Contributed by Thierry Arnoux, 2-Mar-2020.)
Hypotheses
Ref Expression
hpg.p  |-  P  =  ( Base `  G
)
hpg.d  |-  .-  =  ( dist `  G )
hpg.i  |-  I  =  (Itv `  G )
hpg.o  |-  O  =  { <. a ,  b
>.  |  ( (
a  e.  ( P 
\  D )  /\  b  e.  ( P  \  D ) )  /\  E. t  e.  D  t  e.  ( a I b ) ) }
opphl.l  |-  L  =  (LineG `  G )
opphl.d  |-  ( ph  ->  D  e.  ran  L
)
opphl.g  |-  ( ph  ->  G  e. TarskiG )
opphl.k  |-  K  =  (hlG `  G )
opphllem5.n  |-  N  =  ( (pInvG `  G
) `  M )
opphllem5.a  |-  ( ph  ->  A  e.  P )
opphllem5.c  |-  ( ph  ->  C  e.  P )
opphllem5.r  |-  ( ph  ->  R  e.  D )
opphllem5.s  |-  ( ph  ->  S  e.  D )
opphllem5.m  |-  ( ph  ->  M  e.  P )
opphllem5.o  |-  ( ph  ->  A O C )
opphllem5.p  |-  ( ph  ->  D (⟂G `  G
) ( A L R ) )
opphllem5.q  |-  ( ph  ->  D (⟂G `  G
) ( C L S ) )
opphllem5.u  |-  ( ph  ->  U  e.  P )
opphllem5.v  |-  ( ph  ->  V  e.  P )
opphllem5.1  |-  ( ph  ->  U ( K `  R ) A )
opphllem5.2  |-  ( ph  ->  V ( K `  S ) C )
Assertion
Ref Expression
opphllem5  |-  ( ph  ->  U O V )
Distinct variable groups:    D, a,
b    I, a, b    P, a, b    t, A    t, D    t, R    t, C    t, G    t, L    t, U    t, I    t, K   
t, M    t, O    t, N    t, P    t, S    t, V    ph, t    t,  .-    t, a, b
Allowed substitution hints:    ph( a, b)    A( a, b)    C( a, b)    R( a, b)    S( a, b)    U( a, b)    G( a, b)    K( a, b)    L( a, b)    M( a, b)    .- ( a, b)    N( a, b)    O( a, b)    V( a, b)

Proof of Theorem opphllem5
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 hpg.p . . . . . . 7  |-  P  =  ( Base `  G
)
2 hpg.d . . . . . . 7  |-  .-  =  ( dist `  G )
3 hpg.i . . . . . . 7  |-  I  =  (Itv `  G )
4 opphl.l . . . . . . 7  |-  L  =  (LineG `  G )
5 opphl.g . . . . . . 7  |-  ( ph  ->  G  e. TarskiG )
6 opphl.d . . . . . . 7  |-  ( ph  ->  D  e.  ran  L
)
7 opphl.k . . . . . . 7  |-  K  =  (hlG `  G )
8 opphllem5.r . . . . . . 7  |-  ( ph  ->  R  e.  D )
9 opphllem5.a . . . . . . 7  |-  ( ph  ->  A  e.  P )
10 opphllem5.u . . . . . . 7  |-  ( ph  ->  U  e.  P )
11 opphllem5.p . . . . . . . 8  |-  ( ph  ->  D (⟂G `  G
) ( A L R ) )
121, 4, 3, 5, 6, 8tglnpt 25444 . . . . . . . . 9  |-  ( ph  ->  R  e.  P )
13 opphllem5.1 . . . . . . . . . 10  |-  ( ph  ->  U ( K `  R ) A )
141, 3, 7, 10, 9, 12, 5, 13hlne2 25501 . . . . . . . . 9  |-  ( ph  ->  A  =/=  R )
151, 3, 4, 5, 9, 12, 14tglinecom 25530 . . . . . . . 8  |-  ( ph  ->  ( A L R )  =  ( R L A ) )
1611, 15breqtrd 4679 . . . . . . 7  |-  ( ph  ->  D (⟂G `  G
) ( R L A ) )
171, 3, 7, 10, 9, 12, 5, 13hlcomd 25499 . . . . . . 7  |-  ( ph  ->  A ( K `  R ) U )
181, 2, 3, 4, 5, 6, 7, 8, 9, 10, 16, 17hlperpnel 25617 . . . . . 6  |-  ( ph  ->  -.  U  e.  D
)
1918ad3antrrr 766 . . . . 5  |-  ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  ->  -.  U  e.  D )
20 opphllem5.s . . . . . . 7  |-  ( ph  ->  S  e.  D )
21 opphllem5.c . . . . . . 7  |-  ( ph  ->  C  e.  P )
22 opphllem5.v . . . . . . 7  |-  ( ph  ->  V  e.  P )
23 opphllem5.q . . . . . . . 8  |-  ( ph  ->  D (⟂G `  G
) ( C L S ) )
241, 4, 3, 5, 6, 20tglnpt 25444 . . . . . . . . 9  |-  ( ph  ->  S  e.  P )
25 opphllem5.2 . . . . . . . . . 10  |-  ( ph  ->  V ( K `  S ) C )
261, 3, 7, 22, 21, 24, 5, 25hlne2 25501 . . . . . . . . 9  |-  ( ph  ->  C  =/=  S )
271, 3, 4, 5, 21, 24, 26tglinecom 25530 . . . . . . . 8  |-  ( ph  ->  ( C L S )  =  ( S L C ) )
2823, 27breqtrd 4679 . . . . . . 7  |-  ( ph  ->  D (⟂G `  G
) ( S L C ) )
291, 3, 7, 22, 21, 24, 5, 25hlcomd 25499 . . . . . . 7  |-  ( ph  ->  C ( K `  S ) V )
301, 2, 3, 4, 5, 6, 7, 20, 21, 22, 28, 29hlperpnel 25617 . . . . . 6  |-  ( ph  ->  -.  V  e.  D
)
3130ad3antrrr 766 . . . . 5  |-  ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  ->  -.  V  e.  D )
32 simplr 792 . . . . . 6  |-  ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  ->  t  e.  D )
33 simpr 477 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  /\  R  =  t )  ->  R  =  t )
34 eqid 2622 . . . . . . . . 9  |-  (pInvG `  G )  =  (pInvG `  G )
355ad3antrrr 766 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  ->  G  e. TarskiG )
3635adantr 481 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  /\  R  =/=  t )  ->  G  e. TarskiG )
3721ad3antrrr 766 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  ->  C  e.  P )
3837adantr 481 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  /\  R  =/=  t )  ->  C  e.  P )
3912ad3antrrr 766 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  ->  R  e.  P )
4039adantr 481 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  /\  R  =/=  t )  ->  R  e.  P )
416ad3antrrr 766 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  ->  D  e.  ran  L )
421, 4, 3, 35, 41, 32tglnpt 25444 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  ->  t  e.  P )
4342adantr 481 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  /\  R  =/=  t )  ->  t  e.  P )
449ad3antrrr 766 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  ->  A  e.  P )
4544adantr 481 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  /\  R  =/=  t )  ->  A  e.  P )
4624ad3antrrr 766 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  ->  S  e.  P )
4746adantr 481 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  /\  R  =/=  t )  ->  S  e.  P )
48 simpllr 799 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  ->  R  =  S )
491, 3, 4, 5, 21, 24, 26tglinerflx2 25529 . . . . . . . . . . . . 13  |-  ( ph  ->  S  e.  ( C L S ) )
5049ad3antrrr 766 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  ->  S  e.  ( C L S ) )
5148, 50eqeltrd 2701 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  ->  R  e.  ( C L S ) )
5251adantr 481 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  /\  R  =/=  t )  ->  R  e.  ( C L S ) )
531, 3, 4, 5, 21, 24, 26tgelrnln 25525 . . . . . . . . . . . . 13  |-  ( ph  ->  ( C L S )  e.  ran  L
)
541, 2, 3, 4, 5, 6, 53, 23perpcom 25608 . . . . . . . . . . . 12  |-  ( ph  ->  ( C L S ) (⟂G `  G
) D )
5554ad4antr 768 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  /\  R  =/=  t )  ->  ( C L S ) (⟂G `  G ) D )
56 simpr 477 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  /\  R  =/=  t )  ->  R  =/=  t )
5741adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  /\  R  =/=  t )  ->  D  e.  ran  L )
588ad3antrrr 766 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  ->  R  e.  D )
5958adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  /\  R  =/=  t )  ->  R  e.  D )
6032adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  /\  R  =/=  t )  ->  t  e.  D )
611, 3, 4, 36, 40, 43, 56, 56, 57, 59, 60tglinethru 25531 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  /\  R  =/=  t )  ->  D  =  ( R L t ) )
6255, 61breqtrd 4679 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  /\  R  =/=  t )  ->  ( C L S ) (⟂G `  G ) ( R L t ) )
631, 2, 3, 4, 36, 38, 47, 52, 43, 62perprag 25618 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  /\  R  =/=  t )  ->  <" C R t ">  e.  (∟G `  G )
)
641, 3, 4, 5, 9, 12, 14tglinerflx2 25529 . . . . . . . . . . . 12  |-  ( ph  ->  R  e.  ( A L R ) )
6564ad3antrrr 766 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  ->  R  e.  ( A L R ) )
6665adantr 481 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  /\  R  =/=  t )  ->  R  e.  ( A L R ) )
671, 3, 4, 5, 9, 12, 14tgelrnln 25525 . . . . . . . . . . . . 13  |-  ( ph  ->  ( A L R )  e.  ran  L
)
681, 2, 3, 4, 5, 6, 67, 11perpcom 25608 . . . . . . . . . . . 12  |-  ( ph  ->  ( A L R ) (⟂G `  G
) D )
6968ad4antr 768 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  /\  R  =/=  t )  ->  ( A L R ) (⟂G `  G ) D )
7069, 61breqtrd 4679 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  /\  R  =/=  t )  ->  ( A L R ) (⟂G `  G ) ( R L t ) )
711, 2, 3, 4, 36, 45, 40, 66, 43, 70perprag 25618 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  /\  R  =/=  t )  ->  <" A R t ">  e.  (∟G `  G )
)
72 simplr 792 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  /\  R  =/=  t )  ->  t  e.  ( A I C ) )
731, 2, 3, 36, 45, 43, 38, 72tgbtwncom 25383 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  /\  R  =/=  t )  ->  t  e.  ( C I A ) )
741, 2, 3, 4, 34, 36, 38, 40, 43, 45, 63, 71, 73ragflat2 25598 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  /\  R  =/=  t )  ->  R  =  t )
7533, 74pm2.61dane 2881 . . . . . . 7  |-  ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  ->  R  =  t )
7610ad3antrrr 766 . . . . . . . 8  |-  ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  ->  U  e.  P )
7722ad3antrrr 766 . . . . . . . 8  |-  ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  ->  V  e.  P )
7817ad3antrrr 766 . . . . . . . 8  |-  ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  ->  A ( K `  R ) U )
7925ad3antrrr 766 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  ->  V ( K `  S ) C )
8048fveq2d 6195 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  ->  ( K `  R )  =  ( K `  S ) )
8180breqd 4664 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  ->  ( V
( K `  R
) C  <->  V ( K `  S ) C ) )
8279, 81mpbird 247 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  ->  V ( K `  R ) C )
831, 3, 7, 77, 37, 39, 35, 82hlcomd 25499 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  ->  C ( K `  R ) V )
84 simpr 477 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  ->  t  e.  ( A I C ) )
8575, 84eqeltrd 2701 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  ->  R  e.  ( A I C ) )
861, 2, 3, 35, 44, 39, 37, 85tgbtwncom 25383 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  ->  R  e.  ( C I A ) )
871, 3, 7, 37, 77, 44, 35, 39, 83, 86btwnhl 25509 . . . . . . . . 9  |-  ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  ->  R  e.  ( V I A ) )
881, 2, 3, 35, 77, 39, 44, 87tgbtwncom 25383 . . . . . . . 8  |-  ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  ->  R  e.  ( A I V ) )
891, 3, 7, 44, 76, 77, 35, 39, 78, 88btwnhl 25509 . . . . . . 7  |-  ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  ->  R  e.  ( U I V ) )
9075, 89eqeltrrd 2702 . . . . . 6  |-  ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  ->  t  e.  ( U I V ) )
91 rspe 3003 . . . . . 6  |-  ( ( t  e.  D  /\  t  e.  ( U I V ) )  ->  E. t  e.  D  t  e.  ( U I V ) )
9232, 90, 91syl2anc 693 . . . . 5  |-  ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  ->  E. t  e.  D  t  e.  ( U I V ) )
9319, 31, 92jca31 557 . . . 4  |-  ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  ->  ( ( -.  U  e.  D  /\  -.  V  e.  D
)  /\  E. t  e.  D  t  e.  ( U I V ) ) )
94 hpg.o . . . . . 6  |-  O  =  { <. a ,  b
>.  |  ( (
a  e.  ( P 
\  D )  /\  b  e.  ( P  \  D ) )  /\  E. t  e.  D  t  e.  ( a I b ) ) }
951, 2, 3, 94, 10, 22islnopp 25631 . . . . 5  |-  ( ph  ->  ( U O V  <-> 
( ( -.  U  e.  D  /\  -.  V  e.  D )  /\  E. t  e.  D  t  e.  ( U I V ) ) ) )
9695ad3antrrr 766 . . . 4  |-  ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  ->  ( U O V  <->  ( ( -.  U  e.  D  /\  -.  V  e.  D
)  /\  E. t  e.  D  t  e.  ( U I V ) ) ) )
9793, 96mpbird 247 . . 3  |-  ( ( ( ( ph  /\  R  =  S )  /\  t  e.  D
)  /\  t  e.  ( A I C ) )  ->  U O V )
98 opphllem5.o . . . . . 6  |-  ( ph  ->  A O C )
991, 2, 3, 94, 9, 21islnopp 25631 . . . . . 6  |-  ( ph  ->  ( A O C  <-> 
( ( -.  A  e.  D  /\  -.  C  e.  D )  /\  E. t  e.  D  t  e.  ( A I C ) ) ) )
10098, 99mpbid 222 . . . . 5  |-  ( ph  ->  ( ( -.  A  e.  D  /\  -.  C  e.  D )  /\  E. t  e.  D  t  e.  ( A I C ) ) )
101100simprd 479 . . . 4  |-  ( ph  ->  E. t  e.  D  t  e.  ( A I C ) )
102101adantr 481 . . 3  |-  ( (
ph  /\  R  =  S )  ->  E. t  e.  D  t  e.  ( A I C ) )
10397, 102r19.29a 3078 . 2  |-  ( (
ph  /\  R  =  S )  ->  U O V )
1046ad4antr 768 . . . . 5  |-  ( ( ( ( ( ph  /\  R  =/=  S )  /\  m  e.  P
)  /\  S  =  ( ( (pInvG `  G ) `  m
) `  R )
)  /\  ( S  .-  C ) (≤G `  G ) ( R 
.-  A ) )  ->  D  e.  ran  L )
1055ad4antr 768 . . . . 5  |-  ( ( ( ( ( ph  /\  R  =/=  S )  /\  m  e.  P
)  /\  S  =  ( ( (pInvG `  G ) `  m
) `  R )
)  /\  ( S  .-  C ) (≤G `  G ) ( R 
.-  A ) )  ->  G  e. TarskiG )
106 eqid 2622 . . . . 5  |-  ( (pInvG `  G ) `  m
)  =  ( (pInvG `  G ) `  m
)
1079ad4antr 768 . . . . 5  |-  ( ( ( ( ( ph  /\  R  =/=  S )  /\  m  e.  P
)  /\  S  =  ( ( (pInvG `  G ) `  m
) `  R )
)  /\  ( S  .-  C ) (≤G `  G ) ( R 
.-  A ) )  ->  A  e.  P
)
10821ad4antr 768 . . . . 5  |-  ( ( ( ( ( ph  /\  R  =/=  S )  /\  m  e.  P
)  /\  S  =  ( ( (pInvG `  G ) `  m
) `  R )
)  /\  ( S  .-  C ) (≤G `  G ) ( R 
.-  A ) )  ->  C  e.  P
)
1098ad4antr 768 . . . . 5  |-  ( ( ( ( ( ph  /\  R  =/=  S )  /\  m  e.  P
)  /\  S  =  ( ( (pInvG `  G ) `  m
) `  R )
)  /\  ( S  .-  C ) (≤G `  G ) ( R 
.-  A ) )  ->  R  e.  D
)
11020ad4antr 768 . . . . 5  |-  ( ( ( ( ( ph  /\  R  =/=  S )  /\  m  e.  P
)  /\  S  =  ( ( (pInvG `  G ) `  m
) `  R )
)  /\  ( S  .-  C ) (≤G `  G ) ( R 
.-  A ) )  ->  S  e.  D
)
111 simpllr 799 . . . . 5  |-  ( ( ( ( ( ph  /\  R  =/=  S )  /\  m  e.  P
)  /\  S  =  ( ( (pInvG `  G ) `  m
) `  R )
)  /\  ( S  .-  C ) (≤G `  G ) ( R 
.-  A ) )  ->  m  e.  P
)
11298ad4antr 768 . . . . 5  |-  ( ( ( ( ( ph  /\  R  =/=  S )  /\  m  e.  P
)  /\  S  =  ( ( (pInvG `  G ) `  m
) `  R )
)  /\  ( S  .-  C ) (≤G `  G ) ( R 
.-  A ) )  ->  A O C )
11311ad4antr 768 . . . . 5  |-  ( ( ( ( ( ph  /\  R  =/=  S )  /\  m  e.  P
)  /\  S  =  ( ( (pInvG `  G ) `  m
) `  R )
)  /\  ( S  .-  C ) (≤G `  G ) ( R 
.-  A ) )  ->  D (⟂G `  G
) ( A L R ) )
11423ad4antr 768 . . . . 5  |-  ( ( ( ( ( ph  /\  R  =/=  S )  /\  m  e.  P
)  /\  S  =  ( ( (pInvG `  G ) `  m
) `  R )
)  /\  ( S  .-  C ) (≤G `  G ) ( R 
.-  A ) )  ->  D (⟂G `  G
) ( C L S ) )
115 simpr 477 . . . . . 6  |-  ( (
ph  /\  R  =/=  S )  ->  R  =/=  S )
116115ad3antrrr 766 . . . . 5  |-  ( ( ( ( ( ph  /\  R  =/=  S )  /\  m  e.  P
)  /\  S  =  ( ( (pInvG `  G ) `  m
) `  R )
)  /\  ( S  .-  C ) (≤G `  G ) ( R 
.-  A ) )  ->  R  =/=  S
)
117 simpr 477 . . . . 5  |-  ( ( ( ( ( ph  /\  R  =/=  S )  /\  m  e.  P
)  /\  S  =  ( ( (pInvG `  G ) `  m
) `  R )
)  /\  ( S  .-  C ) (≤G `  G ) ( R 
.-  A ) )  ->  ( S  .-  C ) (≤G `  G ) ( R 
.-  A ) )
11810ad4antr 768 . . . . 5  |-  ( ( ( ( ( ph  /\  R  =/=  S )  /\  m  e.  P
)  /\  S  =  ( ( (pInvG `  G ) `  m
) `  R )
)  /\  ( S  .-  C ) (≤G `  G ) ( R 
.-  A ) )  ->  U  e.  P
)
119 simplr 792 . . . . . 6  |-  ( ( ( ( ( ph  /\  R  =/=  S )  /\  m  e.  P
)  /\  S  =  ( ( (pInvG `  G ) `  m
) `  R )
)  /\  ( S  .-  C ) (≤G `  G ) ( R 
.-  A ) )  ->  S  =  ( ( (pInvG `  G
) `  m ) `  R ) )
120119eqcomd 2628 . . . . 5  |-  ( ( ( ( ( ph  /\  R  =/=  S )  /\  m  e.  P
)  /\  S  =  ( ( (pInvG `  G ) `  m
) `  R )
)  /\  ( S  .-  C ) (≤G `  G ) ( R 
.-  A ) )  ->  ( ( (pInvG `  G ) `  m
) `  R )  =  S )
12122ad4antr 768 . . . . 5  |-  ( ( ( ( ( ph  /\  R  =/=  S )  /\  m  e.  P
)  /\  S  =  ( ( (pInvG `  G ) `  m
) `  R )
)  /\  ( S  .-  C ) (≤G `  G ) ( R 
.-  A ) )  ->  V  e.  P
)
12213ad4antr 768 . . . . 5  |-  ( ( ( ( ( ph  /\  R  =/=  S )  /\  m  e.  P
)  /\  S  =  ( ( (pInvG `  G ) `  m
) `  R )
)  /\  ( S  .-  C ) (≤G `  G ) ( R 
.-  A ) )  ->  U ( K `
 R ) A )
12325ad4antr 768 . . . . 5  |-  ( ( ( ( ( ph  /\  R  =/=  S )  /\  m  e.  P
)  /\  S  =  ( ( (pInvG `  G ) `  m
) `  R )
)  /\  ( S  .-  C ) (≤G `  G ) ( R 
.-  A ) )  ->  V ( K `
 S ) C )
1241, 2, 3, 94, 4, 104, 105, 7, 106, 107, 108, 109, 110, 111, 112, 113, 114, 116, 117, 118, 120, 121, 122, 123opphllem4 25642 . . . 4  |-  ( ( ( ( ( ph  /\  R  =/=  S )  /\  m  e.  P
)  /\  S  =  ( ( (pInvG `  G ) `  m
) `  R )
)  /\  ( S  .-  C ) (≤G `  G ) ( R 
.-  A ) )  ->  U O V )
1256ad4antr 768 . . . . 5  |-  ( ( ( ( ( ph  /\  R  =/=  S )  /\  m  e.  P
)  /\  S  =  ( ( (pInvG `  G ) `  m
) `  R )
)  /\  ( R  .-  A ) (≤G `  G ) ( S 
.-  C ) )  ->  D  e.  ran  L )
1265adantr 481 . . . . . 6  |-  ( (
ph  /\  R  =/=  S )  ->  G  e. TarskiG )
127126ad3antrrr 766 . . . . 5  |-  ( ( ( ( ( ph  /\  R  =/=  S )  /\  m  e.  P
)  /\  S  =  ( ( (pInvG `  G ) `  m
) `  R )
)  /\  ( R  .-  A ) (≤G `  G ) ( S 
.-  C ) )  ->  G  e. TarskiG )
12822ad4antr 768 . . . . 5  |-  ( ( ( ( ( ph  /\  R  =/=  S )  /\  m  e.  P
)  /\  S  =  ( ( (pInvG `  G ) `  m
) `  R )
)  /\  ( R  .-  A ) (≤G `  G ) ( S 
.-  C ) )  ->  V  e.  P
)
12910ad4antr 768 . . . . 5  |-  ( ( ( ( ( ph  /\  R  =/=  S )  /\  m  e.  P
)  /\  S  =  ( ( (pInvG `  G ) `  m
) `  R )
)  /\  ( R  .-  A ) (≤G `  G ) ( S 
.-  C ) )  ->  U  e.  P
)
13021ad4antr 768 . . . . . 6  |-  ( ( ( ( ( ph  /\  R  =/=  S )  /\  m  e.  P
)  /\  S  =  ( ( (pInvG `  G ) `  m
) `  R )
)  /\  ( R  .-  A ) (≤G `  G ) ( S 
.-  C ) )  ->  C  e.  P
)
1319adantr 481 . . . . . . 7  |-  ( (
ph  /\  R  =/=  S )  ->  A  e.  P )
132131ad3antrrr 766 . . . . . 6  |-  ( ( ( ( ( ph  /\  R  =/=  S )  /\  m  e.  P
)  /\  S  =  ( ( (pInvG `  G ) `  m
) `  R )
)  /\  ( R  .-  A ) (≤G `  G ) ( S 
.-  C ) )  ->  A  e.  P
)
13320adantr 481 . . . . . . 7  |-  ( (
ph  /\  R  =/=  S )  ->  S  e.  D )
134133ad3antrrr 766 . . . . . 6  |-  ( ( ( ( ( ph  /\  R  =/=  S )  /\  m  e.  P
)  /\  S  =  ( ( (pInvG `  G ) `  m
) `  R )
)  /\  ( R  .-  A ) (≤G `  G ) ( S 
.-  C ) )  ->  S  e.  D
)
1358adantr 481 . . . . . . 7  |-  ( (
ph  /\  R  =/=  S )  ->  R  e.  D )
136135ad3antrrr 766 . . . . . 6  |-  ( ( ( ( ( ph  /\  R  =/=  S )  /\  m  e.  P
)  /\  S  =  ( ( (pInvG `  G ) `  m
) `  R )
)  /\  ( R  .-  A ) (≤G `  G ) ( S 
.-  C ) )  ->  R  e.  D
)
137 simpllr 799 . . . . . 6  |-  ( ( ( ( ( ph  /\  R  =/=  S )  /\  m  e.  P
)  /\  S  =  ( ( (pInvG `  G ) `  m
) `  R )
)  /\  ( R  .-  A ) (≤G `  G ) ( S 
.-  C ) )  ->  m  e.  P
)
13898ad4antr 768 . . . . . . 7  |-  ( ( ( ( ( ph  /\  R  =/=  S )  /\  m  e.  P
)  /\  S  =  ( ( (pInvG `  G ) `  m
) `  R )
)  /\  ( R  .-  A ) (≤G `  G ) ( S 
.-  C ) )  ->  A O C )
1391, 2, 3, 94, 4, 125, 127, 132, 130, 138oppcom 25636 . . . . . 6  |-  ( ( ( ( ( ph  /\  R  =/=  S )  /\  m  e.  P
)  /\  S  =  ( ( (pInvG `  G ) `  m
) `  R )
)  /\  ( R  .-  A ) (≤G `  G ) ( S 
.-  C ) )  ->  C O A )
14023ad4antr 768 . . . . . 6  |-  ( ( ( ( ( ph  /\  R  =/=  S )  /\  m  e.  P
)  /\  S  =  ( ( (pInvG `  G ) `  m
) `  R )
)  /\  ( R  .-  A ) (≤G `  G ) ( S 
.-  C ) )  ->  D (⟂G `  G
) ( C L S ) )
14111adantr 481 . . . . . . 7  |-  ( (
ph  /\  R  =/=  S )  ->  D (⟂G `  G ) ( A L R ) )
142141ad3antrrr 766 . . . . . 6  |-  ( ( ( ( ( ph  /\  R  =/=  S )  /\  m  e.  P
)  /\  S  =  ( ( (pInvG `  G ) `  m
) `  R )
)  /\  ( R  .-  A ) (≤G `  G ) ( S 
.-  C ) )  ->  D (⟂G `  G
) ( A L R ) )
143115necomd 2849 . . . . . . 7  |-  ( (
ph  /\  R  =/=  S )  ->  S  =/=  R )
144143ad3antrrr 766 . . . . . 6  |-  ( ( ( ( ( ph  /\  R  =/=  S )  /\  m  e.  P
)  /\  S  =  ( ( (pInvG `  G ) `  m
) `  R )
)  /\  ( R  .-  A ) (≤G `  G ) ( S 
.-  C ) )  ->  S  =/=  R
)
145 simpr 477 . . . . . 6  |-  ( ( ( ( ( ph  /\  R  =/=  S )  /\  m  e.  P
)  /\  S  =  ( ( (pInvG `  G ) `  m
) `  R )
)  /\  ( R  .-  A ) (≤G `  G ) ( S 
.-  C ) )  ->  ( R  .-  A ) (≤G `  G ) ( S 
.-  C ) )
14612adantr 481 . . . . . . . 8  |-  ( (
ph  /\  R  =/=  S )  ->  R  e.  P )
147146ad3antrrr 766 . . . . . . 7  |-  ( ( ( ( ( ph  /\  R  =/=  S )  /\  m  e.  P
)  /\  S  =  ( ( (pInvG `  G ) `  m
) `  R )
)  /\  ( R  .-  A ) (≤G `  G ) ( S 
.-  C ) )  ->  R  e.  P
)
148 simplr 792 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  R  =/=  S )  /\  m  e.  P
)  /\  S  =  ( ( (pInvG `  G ) `  m
) `  R )
)  /\  ( R  .-  A ) (≤G `  G ) ( S 
.-  C ) )  ->  S  =  ( ( (pInvG `  G
) `  m ) `  R ) )
149148eqcomd 2628 . . . . . . 7  |-  ( ( ( ( ( ph  /\  R  =/=  S )  /\  m  e.  P
)  /\  S  =  ( ( (pInvG `  G ) `  m
) `  R )
)  /\  ( R  .-  A ) (≤G `  G ) ( S 
.-  C ) )  ->  ( ( (pInvG `  G ) `  m
) `  R )  =  S )
1501, 2, 3, 4, 34, 127, 137, 106, 147, 149mircom 25558 . . . . . 6  |-  ( ( ( ( ( ph  /\  R  =/=  S )  /\  m  e.  P
)  /\  S  =  ( ( (pInvG `  G ) `  m
) `  R )
)  /\  ( R  .-  A ) (≤G `  G ) ( S 
.-  C ) )  ->  ( ( (pInvG `  G ) `  m
) `  S )  =  R )
15125ad4antr 768 . . . . . 6  |-  ( ( ( ( ( ph  /\  R  =/=  S )  /\  m  e.  P
)  /\  S  =  ( ( (pInvG `  G ) `  m
) `  R )
)  /\  ( R  .-  A ) (≤G `  G ) ( S 
.-  C ) )  ->  V ( K `
 S ) C )
15213ad4antr 768 . . . . . 6  |-  ( ( ( ( ( ph  /\  R  =/=  S )  /\  m  e.  P
)  /\  S  =  ( ( (pInvG `  G ) `  m
) `  R )
)  /\  ( R  .-  A ) (≤G `  G ) ( S 
.-  C ) )  ->  U ( K `
 R ) A )
1531, 2, 3, 94, 4, 125, 127, 7, 106, 130, 132, 134, 136, 137, 139, 140, 142, 144, 145, 128, 150, 129, 151, 152opphllem4 25642 . . . . 5  |-  ( ( ( ( ( ph  /\  R  =/=  S )  /\  m  e.  P
)  /\  S  =  ( ( (pInvG `  G ) `  m
) `  R )
)  /\  ( R  .-  A ) (≤G `  G ) ( S 
.-  C ) )  ->  V O U )
1541, 2, 3, 94, 4, 125, 127, 128, 129, 153oppcom 25636 . . . 4  |-  ( ( ( ( ( ph  /\  R  =/=  S )  /\  m  e.  P
)  /\  S  =  ( ( (pInvG `  G ) `  m
) `  R )
)  /\  ( R  .-  A ) (≤G `  G ) ( S 
.-  C ) )  ->  U O V )
155 eqid 2622 . . . . . 6  |-  (≤G `  G )  =  (≤G `  G )
1561, 2, 3, 155, 5, 24, 21, 12, 9legtrid 25486 . . . . 5  |-  ( ph  ->  ( ( S  .-  C ) (≤G `  G ) ( R 
.-  A )  \/  ( R  .-  A
) (≤G `  G
) ( S  .-  C ) ) )
157156ad3antrrr 766 . . . 4  |-  ( ( ( ( ph  /\  R  =/=  S )  /\  m  e.  P )  /\  S  =  (
( (pInvG `  G
) `  m ) `  R ) )  -> 
( ( S  .-  C ) (≤G `  G ) ( R 
.-  A )  \/  ( R  .-  A
) (≤G `  G
) ( S  .-  C ) ) )
158124, 154, 157mpjaodan 827 . . 3  |-  ( ( ( ( ph  /\  R  =/=  S )  /\  m  e.  P )  /\  S  =  (
( (pInvG `  G
) `  m ) `  R ) )  ->  U O V )
15924adantr 481 . . . 4  |-  ( (
ph  /\  R  =/=  S )  ->  S  e.  P )
1601, 2, 3, 94, 4, 6, 5, 9, 21, 98opptgdim2 25637 . . . . 5  |-  ( ph  ->  GDimTarskiG 2 )
161160adantr 481 . . . 4  |-  ( (
ph  /\  R  =/=  S )  ->  GDimTarskiG 2 )
1621, 2, 3, 4, 126, 34, 146, 159, 161midex 25629 . . 3  |-  ( (
ph  /\  R  =/=  S )  ->  E. m  e.  P  S  =  ( ( (pInvG `  G ) `  m
) `  R )
)
163158, 162r19.29a 3078 . 2  |-  ( (
ph  /\  R  =/=  S )  ->  U O V )
164103, 163pm2.61dane 2881 1  |-  ( ph  ->  U O V )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913    \ cdif 3571   class class class wbr 4653   {copab 4712   ran crn 5115   ` cfv 5888  (class class class)co 6650   2c2 11070   Basecbs 15857   distcds 15950  TarskiGcstrkg 25329  DimTarskiGcstrkgld 25333  Itvcitv 25335  LineGclng 25336  ≤Gcleg 25477  hlGchlg 25495  pInvGcmir 25547  ⟂Gcperpg 25590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-s3 13594  df-trkgc 25347  df-trkgb 25348  df-trkgcb 25349  df-trkgld 25351  df-trkg 25352  df-cgrg 25406  df-leg 25478  df-hlg 25496  df-mir 25548  df-rag 25589  df-perpg 25591
This theorem is referenced by:  opphl  25646
  Copyright terms: Public domain W3C validator