| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hmeoimaf1o | Structured version Visualization version Unicode version | ||
| Description: The function mapping open sets to their images under a homeomorphism is a bijection of topologies. (Contributed by Mario Carneiro, 10-Sep-2015.) |
| Ref | Expression |
|---|---|
| hmeoimaf1o.1 |
|
| Ref | Expression |
|---|---|
| hmeoimaf1o |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hmeoimaf1o.1 |
. 2
| |
| 2 | hmeoima 21568 |
. 2
| |
| 3 | hmeocn 21563 |
. . 3
| |
| 4 | cnima 21069 |
. . 3
| |
| 5 | 3, 4 | sylan 488 |
. 2
|
| 6 | eqid 2622 |
. . . . . . 7
| |
| 7 | eqid 2622 |
. . . . . . 7
| |
| 8 | 6, 7 | hmeof1o 21567 |
. . . . . 6
|
| 9 | 8 | adantr 481 |
. . . . 5
|
| 10 | f1of1 6136 |
. . . . 5
| |
| 11 | 9, 10 | syl 17 |
. . . 4
|
| 12 | elssuni 4467 |
. . . . 5
| |
| 13 | 12 | ad2antrl 764 |
. . . 4
|
| 14 | cnvimass 5485 |
. . . . 5
| |
| 15 | f1dm 6105 |
. . . . . 6
| |
| 16 | 11, 15 | syl 17 |
. . . . 5
|
| 17 | 14, 16 | syl5sseq 3653 |
. . . 4
|
| 18 | f1imaeq 6522 |
. . . 4
| |
| 19 | 11, 13, 17, 18 | syl12anc 1324 |
. . 3
|
| 20 | f1ofo 6144 |
. . . . . . 7
| |
| 21 | 9, 20 | syl 17 |
. . . . . 6
|
| 22 | elssuni 4467 |
. . . . . . 7
| |
| 23 | 22 | ad2antll 765 |
. . . . . 6
|
| 24 | foimacnv 6154 |
. . . . . 6
| |
| 25 | 21, 23, 24 | syl2anc 693 |
. . . . 5
|
| 26 | 25 | eqeq2d 2632 |
. . . 4
|
| 27 | eqcom 2629 |
. . . 4
| |
| 28 | 26, 27 | syl6bb 276 |
. . 3
|
| 29 | 19, 28 | bitr3d 270 |
. 2
|
| 30 | 1, 2, 5, 29 | f1o2d 6887 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-map 7859 df-top 20699 df-topon 20716 df-cn 21031 df-hmeo 21558 |
| This theorem is referenced by: hmphen 21588 |
| Copyright terms: Public domain | W3C validator |