Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoidifhspf Structured version   Visualization version   Unicode version

Theorem hoidifhspf 40832
Description:  D is a function that returns the representation of the left side of the difference of a half-open interval and a half-space. Used in Lemma 115F of [Fremlin1] p. 31 . (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
hoidifhspf.d  |-  D  =  ( x  e.  RR  |->  ( a  e.  ( RR  ^m  X ) 
|->  ( k  e.  X  |->  if ( k  =  K ,  if ( x  <_  ( a `  k ) ,  ( a `  k ) ,  x ) ,  ( a `  k
) ) ) ) )
hoidifhspf.y  |-  ( ph  ->  Y  e.  RR )
hoidifhspf.x  |-  ( ph  ->  X  e.  V )
hoidifhspf.a  |-  ( ph  ->  A : X --> RR )
Assertion
Ref Expression
hoidifhspf  |-  ( ph  ->  ( ( D `  Y ) `  A
) : X --> RR )
Distinct variable groups:    x, k    A, a, k    K, a, x    X, a, k, x    Y, a, k, x    ph, a,
k, x
Allowed substitution hints:    A( x)    D( x, k, a)    K( k)    V( x, k, a)

Proof of Theorem hoidifhspf
StepHypRef Expression
1 hoidifhspf.a . . . . . 6  |-  ( ph  ->  A : X --> RR )
21ffvelrnda 6359 . . . . 5  |-  ( (
ph  /\  k  e.  X )  ->  ( A `  k )  e.  RR )
3 hoidifhspf.y . . . . . 6  |-  ( ph  ->  Y  e.  RR )
43adantr 481 . . . . 5  |-  ( (
ph  /\  k  e.  X )  ->  Y  e.  RR )
52, 4ifcld 4131 . . . 4  |-  ( (
ph  /\  k  e.  X )  ->  if ( Y  <_  ( A `
 k ) ,  ( A `  k
) ,  Y )  e.  RR )
65, 2ifcld 4131 . . 3  |-  ( (
ph  /\  k  e.  X )  ->  if ( k  =  K ,  if ( Y  <_  ( A `  k ) ,  ( A `  k ) ,  Y ) ,  ( A `  k
) )  e.  RR )
7 eqid 2622 . . 3  |-  ( k  e.  X  |->  if ( k  =  K ,  if ( Y  <_  ( A `  k ) ,  ( A `  k ) ,  Y
) ,  ( A `
 k ) ) )  =  ( k  e.  X  |->  if ( k  =  K ,  if ( Y  <_  ( A `  k ) ,  ( A `  k ) ,  Y
) ,  ( A `
 k ) ) )
86, 7fmptd 6385 . 2  |-  ( ph  ->  ( k  e.  X  |->  if ( k  =  K ,  if ( Y  <_  ( A `  k ) ,  ( A `  k ) ,  Y ) ,  ( A `  k
) ) ) : X --> RR )
9 hoidifhspf.d . . . 4  |-  D  =  ( x  e.  RR  |->  ( a  e.  ( RR  ^m  X ) 
|->  ( k  e.  X  |->  if ( k  =  K ,  if ( x  <_  ( a `  k ) ,  ( a `  k ) ,  x ) ,  ( a `  k
) ) ) ) )
10 hoidifhspf.x . . . 4  |-  ( ph  ->  X  e.  V )
119, 3, 10, 1hoidifhspval2 40829 . . 3  |-  ( ph  ->  ( ( D `  Y ) `  A
)  =  ( k  e.  X  |->  if ( k  =  K ,  if ( Y  <_  ( A `  k ) ,  ( A `  k ) ,  Y
) ,  ( A `
 k ) ) ) )
1211feq1d 6030 . 2  |-  ( ph  ->  ( ( ( D `
 Y ) `  A ) : X --> RR 
<->  ( k  e.  X  |->  if ( k  =  K ,  if ( Y  <_  ( A `  k ) ,  ( A `  k ) ,  Y ) ,  ( A `  k
) ) ) : X --> RR ) )
138, 12mpbird 247 1  |-  ( ph  ->  ( ( D `  Y ) `  A
) : X --> RR )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   ifcif 4086   class class class wbr 4653    |-> cmpt 4729   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   RRcr 9935    <_ cle 10075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859
This theorem is referenced by:  hoidifhspdmvle  40834  hspmbllem1  40840  hspmbllem2  40841
  Copyright terms: Public domain W3C validator