MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgeqa Structured version   Visualization version   Unicode version

Theorem itgeqa 23580
Description: Approximate equality of integrals. If  C ( x )  =  D ( x ) for almost all  x, then  S. B C ( x )  _d x  =  S. B D ( x )  _d x and one is integrable iff the other is. (Contributed by Mario Carneiro, 12-Aug-2014.) (Revised by Mario Carneiro, 2-Sep-2014.)
Hypotheses
Ref Expression
itgeqa.1  |-  ( (
ph  /\  x  e.  B )  ->  C  e.  CC )
itgeqa.2  |-  ( (
ph  /\  x  e.  B )  ->  D  e.  CC )
itgeqa.3  |-  ( ph  ->  A  C_  RR )
itgeqa.4  |-  ( ph  ->  ( vol* `  A )  =  0 )
itgeqa.5  |-  ( (
ph  /\  x  e.  ( B  \  A ) )  ->  C  =  D )
Assertion
Ref Expression
itgeqa  |-  ( ph  ->  ( ( ( x  e.  B  |->  C )  e.  L^1  <->  ( x  e.  B  |->  D )  e.  L^1 )  /\  S. B C  _d x  =  S. B D  _d x ) )
Distinct variable groups:    x, A    x, B    ph, x
Allowed substitution hints:    C( x)    D( x)

Proof of Theorem itgeqa
Dummy variables  y 
k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itgeqa.3 . . . . 5  |-  ( ph  ->  A  C_  RR )
2 itgeqa.4 . . . . 5  |-  ( ph  ->  ( vol* `  A )  =  0 )
3 itgeqa.5 . . . . 5  |-  ( (
ph  /\  x  e.  ( B  \  A ) )  ->  C  =  D )
4 itgeqa.1 . . . . 5  |-  ( (
ph  /\  x  e.  B )  ->  C  e.  CC )
5 itgeqa.2 . . . . 5  |-  ( (
ph  /\  x  e.  B )  ->  D  e.  CC )
61, 2, 3, 4, 5mbfeqa 23410 . . . 4  |-  ( ph  ->  ( ( x  e.  B  |->  C )  e. MblFn  <->  ( x  e.  B  |->  D )  e. MblFn ) )
7 ifan 4134 . . . . . . . . . 10  |-  if ( ( x  e.  B  /\  0  <_  ( Re
`  ( C  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 )  =  if ( x  e.  B ,  if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 )
84adantlr 751 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  B )  ->  C  e.  CC )
9 elfzelz 12342 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  ( 0 ... 3 )  ->  k  e.  ZZ )
109ad2antlr 763 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  B )  ->  k  e.  ZZ )
11 ax-icn 9995 . . . . . . . . . . . . . . . . . 18  |-  _i  e.  CC
12 ine0 10465 . . . . . . . . . . . . . . . . . 18  |-  _i  =/=  0
13 expclz 12885 . . . . . . . . . . . . . . . . . 18  |-  ( ( _i  e.  CC  /\  _i  =/=  0  /\  k  e.  ZZ )  ->  (
_i ^ k )  e.  CC )
1411, 12, 13mp3an12 1414 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  ZZ  ->  (
_i ^ k )  e.  CC )
1510, 14syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  B )  ->  (
_i ^ k )  e.  CC )
16 expne0i 12892 . . . . . . . . . . . . . . . . . 18  |-  ( ( _i  e.  CC  /\  _i  =/=  0  /\  k  e.  ZZ )  ->  (
_i ^ k )  =/=  0 )
1711, 12, 16mp3an12 1414 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  ZZ  ->  (
_i ^ k )  =/=  0 )
1810, 17syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  B )  ->  (
_i ^ k )  =/=  0 )
198, 15, 18divcld 10801 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  B )  ->  ( C  /  ( _i ^
k ) )  e.  CC )
2019recld 13934 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  B )  ->  (
Re `  ( C  /  ( _i ^
k ) ) )  e.  RR )
21 0re 10040 . . . . . . . . . . . . . 14  |-  0  e.  RR
22 ifcl 4130 . . . . . . . . . . . . . 14  |-  ( ( ( Re `  ( C  /  ( _i ^
k ) ) )  e.  RR  /\  0  e.  RR )  ->  if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 )  e.  RR )
2320, 21, 22sylancl 694 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  B )  ->  if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 )  e.  RR )
2423rexrd 10089 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  B )  ->  if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 )  e.  RR* )
25 max1 12016 . . . . . . . . . . . . 13  |-  ( ( 0  e.  RR  /\  ( Re `  ( C  /  ( _i ^
k ) ) )  e.  RR )  -> 
0  <_  if (
0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) )
2621, 20, 25sylancr 695 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  B )  ->  0  <_  if ( 0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) )
27 elxrge0 12281 . . . . . . . . . . . 12  |-  ( if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 )  e.  ( 0 [,] +oo )  <->  ( if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 )  e.  RR*  /\  0  <_  if ( 0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ) )
2824, 26, 27sylanbrc 698 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  B )  ->  if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 )  e.  ( 0 [,] +oo ) )
29 0e0iccpnf 12283 . . . . . . . . . . . 12  |-  0  e.  ( 0 [,] +oo )
3029a1i 11 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  -.  x  e.  B )  ->  0  e.  ( 0 [,] +oo ) )
3128, 30ifclda 4120 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  if ( x  e.  B ,  if ( 0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 )  e.  ( 0 [,] +oo ) )
327, 31syl5eqel 2705 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 )  e.  ( 0 [,] +oo )
)
3332adantr 481 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  RR )  ->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 )  e.  ( 0 [,] +oo )
)
34 eqid 2622 . . . . . . . 8  |-  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_  ( Re
`  ( C  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) )
3533, 34fmptd 6385 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  (
x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) : RR --> ( 0 [,] +oo ) )
36 ifan 4134 . . . . . . . . . 10  |-  if ( ( x  e.  B  /\  0  <_  ( Re
`  ( D  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( D  /  (
_i ^ k ) ) ) ,  0 )  =  if ( x  e.  B ,  if ( 0  <_  (
Re `  ( D  /  ( _i ^
k ) ) ) ,  ( Re `  ( D  /  (
_i ^ k ) ) ) ,  0 ) ,  0 )
375adantlr 751 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  B )  ->  D  e.  CC )
3837, 15, 18divcld 10801 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  B )  ->  ( D  /  ( _i ^
k ) )  e.  CC )
3938recld 13934 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  B )  ->  (
Re `  ( D  /  ( _i ^
k ) ) )  e.  RR )
40 ifcl 4130 . . . . . . . . . . . . . 14  |-  ( ( ( Re `  ( D  /  ( _i ^
k ) ) )  e.  RR  /\  0  e.  RR )  ->  if ( 0  <_  (
Re `  ( D  /  ( _i ^
k ) ) ) ,  ( Re `  ( D  /  (
_i ^ k ) ) ) ,  0 )  e.  RR )
4139, 21, 40sylancl 694 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  B )  ->  if ( 0  <_  (
Re `  ( D  /  ( _i ^
k ) ) ) ,  ( Re `  ( D  /  (
_i ^ k ) ) ) ,  0 )  e.  RR )
4241rexrd 10089 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  B )  ->  if ( 0  <_  (
Re `  ( D  /  ( _i ^
k ) ) ) ,  ( Re `  ( D  /  (
_i ^ k ) ) ) ,  0 )  e.  RR* )
43 max1 12016 . . . . . . . . . . . . 13  |-  ( ( 0  e.  RR  /\  ( Re `  ( D  /  ( _i ^
k ) ) )  e.  RR )  -> 
0  <_  if (
0  <_  ( Re `  ( D  /  (
_i ^ k ) ) ) ,  ( Re `  ( D  /  ( _i ^
k ) ) ) ,  0 ) )
4421, 39, 43sylancr 695 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  B )  ->  0  <_  if ( 0  <_ 
( Re `  ( D  /  ( _i ^
k ) ) ) ,  ( Re `  ( D  /  (
_i ^ k ) ) ) ,  0 ) )
45 elxrge0 12281 . . . . . . . . . . . 12  |-  ( if ( 0  <_  (
Re `  ( D  /  ( _i ^
k ) ) ) ,  ( Re `  ( D  /  (
_i ^ k ) ) ) ,  0 )  e.  ( 0 [,] +oo )  <->  ( if ( 0  <_  (
Re `  ( D  /  ( _i ^
k ) ) ) ,  ( Re `  ( D  /  (
_i ^ k ) ) ) ,  0 )  e.  RR*  /\  0  <_  if ( 0  <_ 
( Re `  ( D  /  ( _i ^
k ) ) ) ,  ( Re `  ( D  /  (
_i ^ k ) ) ) ,  0 ) ) )
4642, 44, 45sylanbrc 698 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  B )  ->  if ( 0  <_  (
Re `  ( D  /  ( _i ^
k ) ) ) ,  ( Re `  ( D  /  (
_i ^ k ) ) ) ,  0 )  e.  ( 0 [,] +oo ) )
4746, 30ifclda 4120 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  if ( x  e.  B ,  if ( 0  <_ 
( Re `  ( D  /  ( _i ^
k ) ) ) ,  ( Re `  ( D  /  (
_i ^ k ) ) ) ,  0 ) ,  0 )  e.  ( 0 [,] +oo ) )
4836, 47syl5eqel 2705 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( D  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( D  / 
( _i ^ k
) ) ) ,  0 )  e.  ( 0 [,] +oo )
)
4948adantr 481 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  RR )  ->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( D  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( D  / 
( _i ^ k
) ) ) ,  0 )  e.  ( 0 [,] +oo )
)
50 eqid 2622 . . . . . . . 8  |-  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_  ( Re
`  ( D  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( D  /  (
_i ^ k ) ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( D  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( D  / 
( _i ^ k
) ) ) ,  0 ) )
5149, 50fmptd 6385 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  (
x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( D  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( D  / 
( _i ^ k
) ) ) ,  0 ) ) : RR --> ( 0 [,] +oo ) )
521adantr 481 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  A  C_  RR )
532adantr 481 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  ( vol* `  A )  =  0 )
54 simpll 790 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( RR  \  A
) )  /\  x  e.  B )  ->  ph )
55 simpr 477 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  ( RR  \  A
) )  /\  x  e.  B )  ->  x  e.  B )
56 eldifn 3733 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  ( RR  \  A )  ->  -.  x  e.  A )
5756ad2antlr 763 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  ( RR  \  A
) )  /\  x  e.  B )  ->  -.  x  e.  A )
5855, 57eldifd 3585 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( RR  \  A
) )  /\  x  e.  B )  ->  x  e.  ( B  \  A
) )
5954, 58, 3syl2anc 693 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( RR  \  A
) )  /\  x  e.  B )  ->  C  =  D )
6059oveq1d 6665 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( RR  \  A
) )  /\  x  e.  B )  ->  ( C  /  ( _i ^
k ) )  =  ( D  /  (
_i ^ k ) ) )
6160fveq2d 6195 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( RR  \  A
) )  /\  x  e.  B )  ->  (
Re `  ( C  /  ( _i ^
k ) ) )  =  ( Re `  ( D  /  (
_i ^ k ) ) ) )
6261ibllem 23531 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( RR  \  A ) )  ->  if (
( x  e.  B  /\  0  <_  ( Re
`  ( C  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 )  =  if ( ( x  e.  B  /\  0  <_  ( Re
`  ( D  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( D  /  (
_i ^ k ) ) ) ,  0 ) )
63 eldifi 3732 . . . . . . . . . . . . . 14  |-  ( x  e.  ( RR  \  A )  ->  x  e.  RR )
6463adantl 482 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( RR  \  A ) )  ->  x  e.  RR )
65 fvex 6201 . . . . . . . . . . . . . 14  |-  ( Re
`  ( C  / 
( _i ^ k
) ) )  e. 
_V
66 c0ex 10034 . . . . . . . . . . . . . 14  |-  0  e.  _V
6765, 66ifex 4156 . . . . . . . . . . . . 13  |-  if ( ( x  e.  B  /\  0  <_  ( Re
`  ( C  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 )  e.  _V
6834fvmpt2 6291 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR  /\  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 )  e.  _V )  ->  ( ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_  ( Re
`  ( C  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ) `  x
)  =  if ( ( x  e.  B  /\  0  <_  ( Re
`  ( C  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) )
6964, 67, 68sylancl 694 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( RR  \  A ) )  ->  ( (
x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) `  x )  =  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) )
70 fvex 6201 . . . . . . . . . . . . . 14  |-  ( Re
`  ( D  / 
( _i ^ k
) ) )  e. 
_V
7170, 66ifex 4156 . . . . . . . . . . . . 13  |-  if ( ( x  e.  B  /\  0  <_  ( Re
`  ( D  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( D  /  (
_i ^ k ) ) ) ,  0 )  e.  _V
7250fvmpt2 6291 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR  /\  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( D  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( D  / 
( _i ^ k
) ) ) ,  0 )  e.  _V )  ->  ( ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_  ( Re
`  ( D  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( D  /  (
_i ^ k ) ) ) ,  0 ) ) `  x
)  =  if ( ( x  e.  B  /\  0  <_  ( Re
`  ( D  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( D  /  (
_i ^ k ) ) ) ,  0 ) )
7364, 71, 72sylancl 694 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( RR  \  A ) )  ->  ( (
x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( D  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( D  / 
( _i ^ k
) ) ) ,  0 ) ) `  x )  =  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( D  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( D  / 
( _i ^ k
) ) ) ,  0 ) )
7462, 69, 733eqtr4d 2666 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( RR  \  A ) )  ->  ( (
x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) `  x )  =  ( ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( D  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( D  / 
( _i ^ k
) ) ) ,  0 ) ) `  x ) )
7574ralrimiva 2966 . . . . . . . . . 10  |-  ( ph  ->  A. x  e.  ( RR  \  A ) ( ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ) `
 x )  =  ( ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_  ( Re `  ( D  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( D  /  ( _i ^
k ) ) ) ,  0 ) ) `
 x ) )
76 nfv 1843 . . . . . . . . . . 11  |-  F/ y ( ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ) `
 x )  =  ( ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_  ( Re `  ( D  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( D  /  ( _i ^
k ) ) ) ,  0 ) ) `
 x )
77 nffvmpt1 6199 . . . . . . . . . . . 12  |-  F/_ x
( ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ) `
 y )
78 nffvmpt1 6199 . . . . . . . . . . . 12  |-  F/_ x
( ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_  ( Re `  ( D  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( D  /  ( _i ^
k ) ) ) ,  0 ) ) `
 y )
7977, 78nfeq 2776 . . . . . . . . . . 11  |-  F/ x
( ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ) `
 y )  =  ( ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_  ( Re `  ( D  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( D  /  ( _i ^
k ) ) ) ,  0 ) ) `
 y )
80 fveq2 6191 . . . . . . . . . . . 12  |-  ( x  =  y  ->  (
( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) `  x )  =  ( ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) `  y ) )
81 fveq2 6191 . . . . . . . . . . . 12  |-  ( x  =  y  ->  (
( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( D  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( D  / 
( _i ^ k
) ) ) ,  0 ) ) `  x )  =  ( ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( D  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( D  / 
( _i ^ k
) ) ) ,  0 ) ) `  y ) )
8280, 81eqeq12d 2637 . . . . . . . . . . 11  |-  ( x  =  y  ->  (
( ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ) `
 x )  =  ( ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_  ( Re `  ( D  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( D  /  ( _i ^
k ) ) ) ,  0 ) ) `
 x )  <->  ( (
x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) `  y )  =  ( ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( D  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( D  / 
( _i ^ k
) ) ) ,  0 ) ) `  y ) ) )
8376, 79, 82cbvral 3167 . . . . . . . . . 10  |-  ( A. x  e.  ( RR  \  A ) ( ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) `  x )  =  ( ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( D  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( D  / 
( _i ^ k
) ) ) ,  0 ) ) `  x )  <->  A. y  e.  ( RR  \  A
) ( ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_  ( Re
`  ( C  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ) `  y
)  =  ( ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( D  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( D  / 
( _i ^ k
) ) ) ,  0 ) ) `  y ) )
8475, 83sylib 208 . . . . . . . . 9  |-  ( ph  ->  A. y  e.  ( RR  \  A ) ( ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ) `
 y )  =  ( ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_  ( Re `  ( D  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( D  /  ( _i ^
k ) ) ) ,  0 ) ) `
 y ) )
8584r19.21bi 2932 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( RR  \  A ) )  ->  ( (
x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) `  y )  =  ( ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( D  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( D  / 
( _i ^ k
) ) ) ,  0 ) ) `  y ) )
8685adantlr 751 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  y  e.  ( RR  \  A
) )  ->  (
( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) `  y )  =  ( ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( D  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( D  / 
( _i ^ k
) ) ) ,  0 ) ) `  y ) )
8735, 51, 52, 53, 86itg2eqa 23512 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ) )  =  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( D  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( D  / 
( _i ^ k
) ) ) ,  0 ) ) ) )
8887eleq1d 2686 . . . . 5  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  (
( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_  ( Re
`  ( C  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ) )  e.  RR  <->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( D  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( D  / 
( _i ^ k
) ) ) ,  0 ) ) )  e.  RR ) )
8988ralbidva 2985 . . . 4  |-  ( ph  ->  ( A. k  e.  ( 0 ... 3
) ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) )  e.  RR  <->  A. k  e.  ( 0 ... 3
) ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( D  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( D  / 
( _i ^ k
) ) ) ,  0 ) ) )  e.  RR ) )
906, 89anbi12d 747 . . 3  |-  ( ph  ->  ( ( ( x  e.  B  |->  C )  e. MblFn  /\  A. k  e.  ( 0 ... 3
) ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) )  e.  RR )  <->  ( (
x  e.  B  |->  D )  e. MblFn  /\  A. k  e.  ( 0 ... 3
) ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( D  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( D  / 
( _i ^ k
) ) ) ,  0 ) ) )  e.  RR ) ) )
91 eqidd 2623 . . . 4  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) )
92 eqidd 2623 . . . 4  |-  ( (
ph  /\  x  e.  B )  ->  (
Re `  ( C  /  ( _i ^
k ) ) )  =  ( Re `  ( C  /  (
_i ^ k ) ) ) )
9391, 92, 4isibl2 23533 . . 3  |-  ( ph  ->  ( ( x  e.  B  |->  C )  e.  L^1  <->  ( (
x  e.  B  |->  C )  e. MblFn  /\  A. k  e.  ( 0 ... 3
) ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) )  e.  RR ) ) )
94 eqidd 2623 . . . 4  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( D  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( D  / 
( _i ^ k
) ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( D  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( D  / 
( _i ^ k
) ) ) ,  0 ) ) )
95 eqidd 2623 . . . 4  |-  ( (
ph  /\  x  e.  B )  ->  (
Re `  ( D  /  ( _i ^
k ) ) )  =  ( Re `  ( D  /  (
_i ^ k ) ) ) )
9694, 95, 5isibl2 23533 . . 3  |-  ( ph  ->  ( ( x  e.  B  |->  D )  e.  L^1  <->  ( (
x  e.  B  |->  D )  e. MblFn  /\  A. k  e.  ( 0 ... 3
) ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( D  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( D  / 
( _i ^ k
) ) ) ,  0 ) ) )  e.  RR ) ) )
9790, 93, 963bitr4d 300 . 2  |-  ( ph  ->  ( ( x  e.  B  |->  C )  e.  L^1  <->  ( x  e.  B  |->  D )  e.  L^1 ) )
9887oveq2d 6666 . . . 4  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  (
( _i ^ k
)  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) )  =  ( ( _i ^ k )  x.  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( D  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( D  / 
( _i ^ k
) ) ) ,  0 ) ) ) ) )
9998sumeq2dv 14433 . . 3  |-  ( ph  -> 
sum_ k  e.  ( 0 ... 3 ) ( ( _i ^
k )  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ) ) )  =  sum_ k  e.  ( 0 ... 3 ) ( ( _i ^ k
)  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( D  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( D  / 
( _i ^ k
) ) ) ,  0 ) ) ) ) )
100 eqid 2622 . . . 4  |-  ( Re
`  ( C  / 
( _i ^ k
) ) )  =  ( Re `  ( C  /  ( _i ^
k ) ) )
101100dfitg 23536 . . 3  |-  S. B C  _d x  =  sum_ k  e.  ( 0 ... 3 ) ( ( _i ^ k
)  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) )
102 eqid 2622 . . . 4  |-  ( Re
`  ( D  / 
( _i ^ k
) ) )  =  ( Re `  ( D  /  ( _i ^
k ) ) )
103102dfitg 23536 . . 3  |-  S. B D  _d x  =  sum_ k  e.  ( 0 ... 3 ) ( ( _i ^ k
)  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( D  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( D  / 
( _i ^ k
) ) ) ,  0 ) ) ) )
10499, 101, 1033eqtr4g 2681 . 2  |-  ( ph  ->  S. B C  _d x  =  S. B D  _d x )
10597, 104jca 554 1  |-  ( ph  ->  ( ( ( x  e.  B  |->  C )  e.  L^1  <->  ( x  e.  B  |->  D )  e.  L^1 )  /\  S. B C  _d x  =  S. B D  _d x ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   _Vcvv 3200    \ cdif 3571    C_ wss 3574   ifcif 4086   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   _ici 9938    x. cmul 9941   +oocpnf 10071   RR*cxr 10073    <_ cle 10075    / cdiv 10684   3c3 11071   ZZcz 11377   [,]cicc 12178   ...cfz 12326   ^cexp 12860   Recre 13837   sum_csu 14416   vol*covol 23231  MblFncmbf 23383   S.2citg2 23385   L^1cibl 23386   S.citg 23387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-rest 16083  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-bases 20750  df-cmp 21190  df-ovol 23233  df-vol 23234  df-mbf 23388  df-itg1 23389  df-itg2 23390  df-ibl 23391  df-itg 23392
This theorem is referenced by:  itgss3  23581
  Copyright terms: Public domain W3C validator