MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iblcnlem Structured version   Visualization version   Unicode version

Theorem iblcnlem 23555
Description: Expand out the forall in isibl2 23533. (Contributed by Mario Carneiro, 6-Aug-2014.)
Hypotheses
Ref Expression
itgcnlem.r  |-  R  =  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  B
) ) ,  ( Re `  B ) ,  0 ) ) )
itgcnlem.s  |-  S  =  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Re `  B
) ) ,  -u ( Re `  B ) ,  0 ) ) )
itgcnlem.t  |-  T  =  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Im `  B
) ) ,  ( Im `  B ) ,  0 ) ) )
itgcnlem.u  |-  U  =  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Im `  B
) ) ,  -u ( Im `  B ) ,  0 ) ) )
itgcnlem.v  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
Assertion
Ref Expression
iblcnlem  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e.  L^1  <->  ( (
x  e.  A  |->  B )  e. MblFn  /\  ( R  e.  RR  /\  S  e.  RR )  /\  ( T  e.  RR  /\  U  e.  RR ) ) ) )
Distinct variable groups:    x, A    ph, x    x, V
Allowed substitution hints:    B( x)    R( x)    S( x)    T( x)    U( x)

Proof of Theorem iblcnlem
StepHypRef Expression
1 iblmbf 23534 . . 3  |-  ( ( x  e.  A  |->  B )  e.  L^1 
->  ( x  e.  A  |->  B )  e. MblFn )
21a1i 11 . 2  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e.  L^1  ->  (
x  e.  A  |->  B )  e. MblFn ) )
3 simp1 1061 . . 3  |-  ( ( ( x  e.  A  |->  B )  e. MblFn  /\  ( R  e.  RR  /\  S  e.  RR )  /\  ( T  e.  RR  /\  U  e.  RR ) )  -> 
( x  e.  A  |->  B )  e. MblFn )
43a1i 11 . 2  |-  ( ph  ->  ( ( ( x  e.  A  |->  B )  e. MblFn  /\  ( R  e.  RR  /\  S  e.  RR )  /\  ( T  e.  RR  /\  U  e.  RR ) )  -> 
( x  e.  A  |->  B )  e. MblFn )
)
5 eqid 2622 . . . . . 6  |-  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 ) ) )  =  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re
`  if ( B  e.  CC ,  B ,  0 ) ) ) ,  ( Re
`  if ( B  e.  CC ,  B ,  0 ) ) ,  0 ) ) )
6 eqid 2622 . . . . . 6  |-  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  -u ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 ) ) )  =  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u (
Re `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  -u ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 ) ) )
7 eqid 2622 . . . . . 6  |-  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Im `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 ) ) )  =  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Im
`  if ( B  e.  CC ,  B ,  0 ) ) ) ,  ( Im
`  if ( B  e.  CC ,  B ,  0 ) ) ,  0 ) ) )
8 eqid 2622 . . . . . 6  |-  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  -u ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 ) ) )  =  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u (
Im `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  -u ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 ) ) )
9 0cn 10032 . . . . . . . 8  |-  0  e.  CC
109elimel 4150 . . . . . . 7  |-  if ( B  e.  CC ,  B ,  0 )  e.  CC
1110a1i 11 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  if ( B  e.  CC ,  B ,  0 )  e.  CC )
125, 6, 7, 8, 11iblcnlem1 23554 . . . . 5  |-  ( ph  ->  ( ( x  e.  A  |->  if ( B  e.  CC ,  B ,  0 ) )  e.  L^1  <->  ( (
x  e.  A  |->  if ( B  e.  CC ,  B ,  0 ) )  e. MblFn  /\  (
( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re
`  if ( B  e.  CC ,  B ,  0 ) ) ) ,  ( Re
`  if ( B  e.  CC ,  B ,  0 ) ) ,  0 ) ) )  e.  RR  /\  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u (
Re `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  -u ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 ) ) )  e.  RR )  /\  ( ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Im `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 ) ) )  e.  RR  /\  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  -u ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 ) ) )  e.  RR ) ) ) )
1312adantr 481 . . . 4  |-  ( (
ph  /\  ( x  e.  A  |->  B )  e. MblFn )  ->  (
( x  e.  A  |->  if ( B  e.  CC ,  B , 
0 ) )  e.  L^1  <->  ( (
x  e.  A  |->  if ( B  e.  CC ,  B ,  0 ) )  e. MblFn  /\  (
( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re
`  if ( B  e.  CC ,  B ,  0 ) ) ) ,  ( Re
`  if ( B  e.  CC ,  B ,  0 ) ) ,  0 ) ) )  e.  RR  /\  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u (
Re `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  -u ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 ) ) )  e.  RR )  /\  ( ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Im `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 ) ) )  e.  RR  /\  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  -u ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 ) ) )  e.  RR ) ) ) )
14 eqid 2622 . . . . . 6  |-  A  =  A
15 mbff 23394 . . . . . . . . 9  |-  ( ( x  e.  A  |->  B )  e. MblFn  ->  ( x  e.  A  |->  B ) : dom  ( x  e.  A  |->  B ) --> CC )
16 eqid 2622 . . . . . . . . . . . 12  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
17 itgcnlem.v . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
1816, 17dmmptd 6024 . . . . . . . . . . 11  |-  ( ph  ->  dom  ( x  e.  A  |->  B )  =  A )
1918feq2d 6031 . . . . . . . . . 10  |-  ( ph  ->  ( ( x  e.  A  |->  B ) : dom  ( x  e.  A  |->  B ) --> CC  <->  ( x  e.  A  |->  B ) : A --> CC ) )
2019biimpa 501 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  A  |->  B ) : dom  ( x  e.  A  |->  B ) --> CC )  ->  (
x  e.  A  |->  B ) : A --> CC )
2115, 20sylan2 491 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  A  |->  B )  e. MblFn )  ->  (
x  e.  A  |->  B ) : A --> CC )
2216fmpt 6381 . . . . . . . 8  |-  ( A. x  e.  A  B  e.  CC  <->  ( x  e.  A  |->  B ) : A --> CC )
2321, 22sylibr 224 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  A  |->  B )  e. MblFn )  ->  A. x  e.  A  B  e.  CC )
24 iftrue 4092 . . . . . . . 8  |-  ( B  e.  CC  ->  if ( B  e.  CC ,  B ,  0 )  =  B )
2524ralimi 2952 . . . . . . 7  |-  ( A. x  e.  A  B  e.  CC  ->  A. x  e.  A  if ( B  e.  CC ,  B ,  0 )  =  B )
2623, 25syl 17 . . . . . 6  |-  ( (
ph  /\  ( x  e.  A  |->  B )  e. MblFn )  ->  A. x  e.  A  if ( B  e.  CC ,  B ,  0 )  =  B )
27 mpteq12 4736 . . . . . 6  |-  ( ( A  =  A  /\  A. x  e.  A  if ( B  e.  CC ,  B ,  0 )  =  B )  -> 
( x  e.  A  |->  if ( B  e.  CC ,  B , 
0 ) )  =  ( x  e.  A  |->  B ) )
2814, 26, 27sylancr 695 . . . . 5  |-  ( (
ph  /\  ( x  e.  A  |->  B )  e. MblFn )  ->  (
x  e.  A  |->  if ( B  e.  CC ,  B ,  0 ) )  =  ( x  e.  A  |->  B ) )
2928eleq1d 2686 . . . 4  |-  ( (
ph  /\  ( x  e.  A  |->  B )  e. MblFn )  ->  (
( x  e.  A  |->  if ( B  e.  CC ,  B , 
0 ) )  e.  L^1  <->  ( x  e.  A  |->  B )  e.  L^1 ) )
3028eleq1d 2686 . . . . 5  |-  ( (
ph  /\  ( x  e.  A  |->  B )  e. MblFn )  ->  (
( x  e.  A  |->  if ( B  e.  CC ,  B , 
0 ) )  e. MblFn  <->  ( x  e.  A  |->  B )  e. MblFn ) )
31 eqid 2622 . . . . . . . . . 10  |-  RR  =  RR
3224imim2i 16 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  A  ->  B  e.  CC )  ->  ( x  e.  A  ->  if ( B  e.  CC ,  B , 
0 )  =  B ) )
3332imp 445 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  A  ->  B  e.  CC )  /\  x  e.  A
)  ->  if ( B  e.  CC ,  B ,  0 )  =  B )
3433fveq2d 6195 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  A  ->  B  e.  CC )  /\  x  e.  A
)  ->  ( Re `  if ( B  e.  CC ,  B , 
0 ) )  =  ( Re `  B
) )
3534ibllem 23531 . . . . . . . . . . . . 13  |-  ( ( x  e.  A  ->  B  e.  CC )  ->  if ( ( x  e.  A  /\  0  <_  ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 )  =  if ( ( x  e.  A  /\  0  <_  ( Re `  B ) ) ,  ( Re `  B
) ,  0 ) )
3635a1d 25 . . . . . . . . . . . 12  |-  ( ( x  e.  A  ->  B  e.  CC )  ->  ( x  e.  RR  ->  if ( ( x  e.  A  /\  0  <_  ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 )  =  if ( ( x  e.  A  /\  0  <_  ( Re `  B ) ) ,  ( Re `  B
) ,  0 ) ) )
3736ralimi2 2949 . . . . . . . . . . 11  |-  ( A. x  e.  A  B  e.  CC  ->  A. x  e.  RR  if ( ( x  e.  A  /\  0  <_  ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 )  =  if ( ( x  e.  A  /\  0  <_  ( Re `  B ) ) ,  ( Re `  B
) ,  0 ) )
3823, 37syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  A  |->  B )  e. MblFn )  ->  A. x  e.  RR  if ( ( x  e.  A  /\  0  <_  ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 )  =  if ( ( x  e.  A  /\  0  <_  ( Re `  B ) ) ,  ( Re `  B
) ,  0 ) )
39 mpteq12 4736 . . . . . . . . . 10  |-  ( ( RR  =  RR  /\  A. x  e.  RR  if ( ( x  e.  A  /\  0  <_ 
( Re `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 )  =  if ( ( x  e.  A  /\  0  <_  ( Re `  B ) ) ,  ( Re `  B
) ,  0 ) )  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re
`  B ) ) ,  ( Re `  B ) ,  0 ) ) )
4031, 38, 39sylancr 695 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  A  |->  B )  e. MblFn )  ->  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re
`  B ) ) ,  ( Re `  B ) ,  0 ) ) )
4140fveq2d 6195 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  A  |->  B )  e. MblFn )  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 ) ) )  =  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re
`  B ) ) ,  ( Re `  B ) ,  0 ) ) ) )
42 itgcnlem.r . . . . . . . 8  |-  R  =  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  B
) ) ,  ( Re `  B ) ,  0 ) ) )
4341, 42syl6eqr 2674 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  A  |->  B )  e. MblFn )  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 ) ) )  =  R )
4443eleq1d 2686 . . . . . 6  |-  ( (
ph  /\  ( x  e.  A  |->  B )  e. MblFn )  ->  (
( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re
`  if ( B  e.  CC ,  B ,  0 ) ) ) ,  ( Re
`  if ( B  e.  CC ,  B ,  0 ) ) ,  0 ) ) )  e.  RR  <->  R  e.  RR ) )
4534negeqd 10275 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  A  ->  B  e.  CC )  /\  x  e.  A
)  ->  -u ( Re
`  if ( B  e.  CC ,  B ,  0 ) )  =  -u ( Re `  B ) )
4645ibllem 23531 . . . . . . . . . . . . 13  |-  ( ( x  e.  A  ->  B  e.  CC )  ->  if ( ( x  e.  A  /\  0  <_ 
-u ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  -u ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 )  =  if ( ( x  e.  A  /\  0  <_  -u ( Re `  B ) ) , 
-u ( Re `  B ) ,  0 ) )
4746a1d 25 . . . . . . . . . . . 12  |-  ( ( x  e.  A  ->  B  e.  CC )  ->  ( x  e.  RR  ->  if ( ( x  e.  A  /\  0  <_ 
-u ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  -u ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 )  =  if ( ( x  e.  A  /\  0  <_  -u ( Re `  B ) ) , 
-u ( Re `  B ) ,  0 ) ) )
4847ralimi2 2949 . . . . . . . . . . 11  |-  ( A. x  e.  A  B  e.  CC  ->  A. x  e.  RR  if ( ( x  e.  A  /\  0  <_  -u ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  -u ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 )  =  if ( ( x  e.  A  /\  0  <_  -u ( Re `  B ) ) , 
-u ( Re `  B ) ,  0 ) )
4923, 48syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  A  |->  B )  e. MblFn )  ->  A. x  e.  RR  if ( ( x  e.  A  /\  0  <_  -u ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  -u ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 )  =  if ( ( x  e.  A  /\  0  <_  -u ( Re `  B ) ) , 
-u ( Re `  B ) ,  0 ) )
50 mpteq12 4736 . . . . . . . . . 10  |-  ( ( RR  =  RR  /\  A. x  e.  RR  if ( ( x  e.  A  /\  0  <_  -u ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  -u ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 )  =  if ( ( x  e.  A  /\  0  <_  -u ( Re `  B ) ) , 
-u ( Re `  B ) ,  0 ) )  ->  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  -u ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u (
Re `  B )
) ,  -u (
Re `  B ) ,  0 ) ) )
5131, 49, 50sylancr 695 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  A  |->  B )  e. MblFn )  ->  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  -u ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u (
Re `  B )
) ,  -u (
Re `  B ) ,  0 ) ) )
5251fveq2d 6195 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  A  |->  B )  e. MblFn )  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  -u ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 ) ) )  =  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u (
Re `  B )
) ,  -u (
Re `  B ) ,  0 ) ) ) )
53 itgcnlem.s . . . . . . . 8  |-  S  =  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Re `  B
) ) ,  -u ( Re `  B ) ,  0 ) ) )
5452, 53syl6eqr 2674 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  A  |->  B )  e. MblFn )  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  -u ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 ) ) )  =  S )
5554eleq1d 2686 . . . . . 6  |-  ( (
ph  /\  ( x  e.  A  |->  B )  e. MblFn )  ->  (
( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u (
Re `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  -u ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 ) ) )  e.  RR  <->  S  e.  RR ) )
5644, 55anbi12d 747 . . . . 5  |-  ( (
ph  /\  ( x  e.  A  |->  B )  e. MblFn )  ->  (
( ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 ) ) )  e.  RR  /\  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  -u ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 ) ) )  e.  RR ) 
<->  ( R  e.  RR  /\  S  e.  RR ) ) )
5733fveq2d 6195 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  A  ->  B  e.  CC )  /\  x  e.  A
)  ->  ( Im `  if ( B  e.  CC ,  B , 
0 ) )  =  ( Im `  B
) )
5857ibllem 23531 . . . . . . . . . . . . 13  |-  ( ( x  e.  A  ->  B  e.  CC )  ->  if ( ( x  e.  A  /\  0  <_  ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 )  =  if ( ( x  e.  A  /\  0  <_  ( Im `  B ) ) ,  ( Im `  B
) ,  0 ) )
5958a1d 25 . . . . . . . . . . . 12  |-  ( ( x  e.  A  ->  B  e.  CC )  ->  ( x  e.  RR  ->  if ( ( x  e.  A  /\  0  <_  ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 )  =  if ( ( x  e.  A  /\  0  <_  ( Im `  B ) ) ,  ( Im `  B
) ,  0 ) ) )
6059ralimi2 2949 . . . . . . . . . . 11  |-  ( A. x  e.  A  B  e.  CC  ->  A. x  e.  RR  if ( ( x  e.  A  /\  0  <_  ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 )  =  if ( ( x  e.  A  /\  0  <_  ( Im `  B ) ) ,  ( Im `  B
) ,  0 ) )
6123, 60syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  A  |->  B )  e. MblFn )  ->  A. x  e.  RR  if ( ( x  e.  A  /\  0  <_  ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 )  =  if ( ( x  e.  A  /\  0  <_  ( Im `  B ) ) ,  ( Im `  B
) ,  0 ) )
62 mpteq12 4736 . . . . . . . . . 10  |-  ( ( RR  =  RR  /\  A. x  e.  RR  if ( ( x  e.  A  /\  0  <_ 
( Im `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 )  =  if ( ( x  e.  A  /\  0  <_  ( Im `  B ) ) ,  ( Im `  B
) ,  0 ) )  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Im
`  B ) ) ,  ( Im `  B ) ,  0 ) ) )
6331, 61, 62sylancr 695 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  A  |->  B )  e. MblFn )  ->  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Im `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Im
`  B ) ) ,  ( Im `  B ) ,  0 ) ) )
6463fveq2d 6195 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  A  |->  B )  e. MblFn )  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 ) ) )  =  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Im
`  B ) ) ,  ( Im `  B ) ,  0 ) ) ) )
65 itgcnlem.t . . . . . . . 8  |-  T  =  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Im `  B
) ) ,  ( Im `  B ) ,  0 ) ) )
6664, 65syl6eqr 2674 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  A  |->  B )  e. MblFn )  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 ) ) )  =  T )
6766eleq1d 2686 . . . . . 6  |-  ( (
ph  /\  ( x  e.  A  |->  B )  e. MblFn )  ->  (
( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Im
`  if ( B  e.  CC ,  B ,  0 ) ) ) ,  ( Im
`  if ( B  e.  CC ,  B ,  0 ) ) ,  0 ) ) )  e.  RR  <->  T  e.  RR ) )
6857negeqd 10275 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  A  ->  B  e.  CC )  /\  x  e.  A
)  ->  -u ( Im
`  if ( B  e.  CC ,  B ,  0 ) )  =  -u ( Im `  B ) )
6968ibllem 23531 . . . . . . . . . . . . 13  |-  ( ( x  e.  A  ->  B  e.  CC )  ->  if ( ( x  e.  A  /\  0  <_ 
-u ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  -u ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 )  =  if ( ( x  e.  A  /\  0  <_  -u ( Im `  B ) ) , 
-u ( Im `  B ) ,  0 ) )
7069a1d 25 . . . . . . . . . . . 12  |-  ( ( x  e.  A  ->  B  e.  CC )  ->  ( x  e.  RR  ->  if ( ( x  e.  A  /\  0  <_ 
-u ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  -u ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 )  =  if ( ( x  e.  A  /\  0  <_  -u ( Im `  B ) ) , 
-u ( Im `  B ) ,  0 ) ) )
7170ralimi2 2949 . . . . . . . . . . 11  |-  ( A. x  e.  A  B  e.  CC  ->  A. x  e.  RR  if ( ( x  e.  A  /\  0  <_  -u ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  -u ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 )  =  if ( ( x  e.  A  /\  0  <_  -u ( Im `  B ) ) , 
-u ( Im `  B ) ,  0 ) )
7223, 71syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  A  |->  B )  e. MblFn )  ->  A. x  e.  RR  if ( ( x  e.  A  /\  0  <_  -u ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  -u ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 )  =  if ( ( x  e.  A  /\  0  <_  -u ( Im `  B ) ) , 
-u ( Im `  B ) ,  0 ) )
73 mpteq12 4736 . . . . . . . . . 10  |-  ( ( RR  =  RR  /\  A. x  e.  RR  if ( ( x  e.  A  /\  0  <_  -u ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  -u ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 )  =  if ( ( x  e.  A  /\  0  <_  -u ( Im `  B ) ) , 
-u ( Im `  B ) ,  0 ) )  ->  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  -u ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u (
Im `  B )
) ,  -u (
Im `  B ) ,  0 ) ) )
7431, 72, 73sylancr 695 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  A  |->  B )  e. MblFn )  ->  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  -u ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u (
Im `  B )
) ,  -u (
Im `  B ) ,  0 ) ) )
7574fveq2d 6195 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  A  |->  B )  e. MblFn )  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  -u ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 ) ) )  =  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u (
Im `  B )
) ,  -u (
Im `  B ) ,  0 ) ) ) )
76 itgcnlem.u . . . . . . . 8  |-  U  =  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Im `  B
) ) ,  -u ( Im `  B ) ,  0 ) ) )
7775, 76syl6eqr 2674 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  A  |->  B )  e. MblFn )  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  -u ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 ) ) )  =  U )
7877eleq1d 2686 . . . . . 6  |-  ( (
ph  /\  ( x  e.  A  |->  B )  e. MblFn )  ->  (
( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u (
Im `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  -u ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 ) ) )  e.  RR  <->  U  e.  RR ) )
7967, 78anbi12d 747 . . . . 5  |-  ( (
ph  /\  ( x  e.  A  |->  B )  e. MblFn )  ->  (
( ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Im `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 ) ) )  e.  RR  /\  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  -u ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 ) ) )  e.  RR ) 
<->  ( T  e.  RR  /\  U  e.  RR ) ) )
8030, 56, 793anbi123d 1399 . . . 4  |-  ( (
ph  /\  ( x  e.  A  |->  B )  e. MblFn )  ->  (
( ( x  e.  A  |->  if ( B  e.  CC ,  B ,  0 ) )  e. MblFn  /\  ( ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 ) ) )  e.  RR  /\  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  -u ( Re `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 ) ) )  e.  RR )  /\  ( ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Im `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 ) ) )  e.  RR  /\  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ) ,  -u ( Im `  if ( B  e.  CC ,  B ,  0 ) ) ,  0 ) ) )  e.  RR ) )  <->  ( (
x  e.  A  |->  B )  e. MblFn  /\  ( R  e.  RR  /\  S  e.  RR )  /\  ( T  e.  RR  /\  U  e.  RR ) ) ) )
8113, 29, 803bitr3d 298 . . 3  |-  ( (
ph  /\  ( x  e.  A  |->  B )  e. MblFn )  ->  (
( x  e.  A  |->  B )  e.  L^1 
<->  ( ( x  e.  A  |->  B )  e. MblFn  /\  ( R  e.  RR  /\  S  e.  RR )  /\  ( T  e.  RR  /\  U  e.  RR ) ) ) )
8281ex 450 . 2  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e. MblFn  ->  ( ( x  e.  A  |->  B )  e.  L^1  <->  ( (
x  e.  A  |->  B )  e. MblFn  /\  ( R  e.  RR  /\  S  e.  RR )  /\  ( T  e.  RR  /\  U  e.  RR ) ) ) ) )
832, 4, 82pm5.21ndd 369 1  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e.  L^1  <->  ( (
x  e.  A  |->  B )  e. MblFn  /\  ( R  e.  RR  /\  S  e.  RR )  /\  ( T  e.  RR  /\  U  e.  RR ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   ifcif 4086   class class class wbr 4653    |-> cmpt 4729   dom cdm 5114   -->wf 5884   ` cfv 5888   CCcc 9934   RRcr 9935   0cc0 9936    <_ cle 10075   -ucneg 10267   Recre 13837   Imcim 13838  MblFncmbf 23383   S.2citg2 23385   L^1cibl 23386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-mbf 23388  df-ibl 23391
This theorem is referenced by:  itgcnlem  23556  iblrelem  23557  ibladd  23587  ibladdnc  33467
  Copyright terms: Public domain W3C validator