MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2cn Structured version   Visualization version   Unicode version

Theorem itg2cn 23530
Description: A sort of absolute continuity of the Lebesgue integral (this is the core of ftc1a 23800 which is about actual absolute continuity). (Contributed by Mario Carneiro, 1-Sep-2014.)
Hypotheses
Ref Expression
itg2cn.1  |-  ( ph  ->  F : RR --> ( 0 [,) +oo ) )
itg2cn.2  |-  ( ph  ->  F  e. MblFn )
itg2cn.3  |-  ( ph  ->  ( S.2 `  F
)  e.  RR )
itg2cn.4  |-  ( ph  ->  C  e.  RR+ )
Assertion
Ref Expression
itg2cn  |-  ( ph  ->  E. d  e.  RR+  A. u  e.  dom  vol ( ( vol `  u
)  <  d  ->  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  u ,  ( F `  x
) ,  0 ) ) )  <  C
) )
Distinct variable groups:    u, d, x, C    F, d, u, x    ph, u, x
Allowed substitution hint:    ph( d)

Proof of Theorem itg2cn
Dummy variables  m  y  z  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itg2cn.3 . . . . . 6  |-  ( ph  ->  ( S.2 `  F
)  e.  RR )
2 itg2cn.4 . . . . . . 7  |-  ( ph  ->  C  e.  RR+ )
32rphalfcld 11884 . . . . . 6  |-  ( ph  ->  ( C  /  2
)  e.  RR+ )
41, 3ltsubrpd 11904 . . . . 5  |-  ( ph  ->  ( ( S.2 `  F
)  -  ( C  /  2 ) )  <  ( S.2 `  F
) )
53rpred 11872 . . . . . . 7  |-  ( ph  ->  ( C  /  2
)  e.  RR )
61, 5resubcld 10458 . . . . . 6  |-  ( ph  ->  ( ( S.2 `  F
)  -  ( C  /  2 ) )  e.  RR )
76, 1ltnled 10184 . . . . 5  |-  ( ph  ->  ( ( ( S.2 `  F )  -  ( C  /  2 ) )  <  ( S.2 `  F
)  <->  -.  ( S.2 `  F )  <_  (
( S.2 `  F )  -  ( C  / 
2 ) ) ) )
84, 7mpbid 222 . . . 4  |-  ( ph  ->  -.  ( S.2 `  F
)  <_  ( ( S.2 `  F )  -  ( C  /  2
) ) )
9 itg2cn.1 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  F : RR --> ( 0 [,) +oo ) )
109ffvelrnda 6359 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  RR )  ->  ( F `
 x )  e.  ( 0 [,) +oo ) )
11 elrege0 12278 . . . . . . . . . . . . . . . 16  |-  ( ( F `  x )  e.  ( 0 [,) +oo )  <->  ( ( F `
 x )  e.  RR  /\  0  <_ 
( F `  x
) ) )
1210, 11sylib 208 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  RR )  ->  ( ( F `  x )  e.  RR  /\  0  <_  ( F `  x
) ) )
1312simpld 475 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  RR )  ->  ( F `
 x )  e.  RR )
1413rexrd 10089 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  RR )  ->  ( F `
 x )  e. 
RR* )
1512simprd 479 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  RR )  ->  0  <_ 
( F `  x
) )
16 elxrge0 12281 . . . . . . . . . . . . 13  |-  ( ( F `  x )  e.  ( 0 [,] +oo )  <->  ( ( F `
 x )  e. 
RR*  /\  0  <_  ( F `  x ) ) )
1714, 15, 16sylanbrc 698 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  RR )  ->  ( F `
 x )  e.  ( 0 [,] +oo ) )
18 0e0iccpnf 12283 . . . . . . . . . . . 12  |-  0  e.  ( 0 [,] +oo )
19 ifcl 4130 . . . . . . . . . . . 12  |-  ( ( ( F `  x
)  e.  ( 0 [,] +oo )  /\  0  e.  ( 0 [,] +oo ) )  ->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 )  e.  ( 0 [,] +oo ) )
2017, 18, 19sylancl 694 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  RR )  ->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 )  e.  ( 0 [,] +oo ) )
2120adantlr 751 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  x  e.  RR )  ->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 )  e.  ( 0 [,] +oo ) )
22 eqid 2622 . . . . . . . . . 10  |-  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) )
2321, 22fmptd 6385 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) : RR --> ( 0 [,] +oo ) )
24 itg2cl 23499 . . . . . . . . 9  |-  ( ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) : RR --> ( 0 [,] +oo )  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) )  e. 
RR* )
2523, 24syl 17 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) )  e. 
RR* )
26 eqid 2622 . . . . . . . 8  |-  ( n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) )  =  ( n  e.  NN  |->  ( S.2 `  (
x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) )
2725, 26fmptd 6385 . . . . . . 7  |-  ( ph  ->  ( n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) ) : NN --> RR* )
28 frn 6053 . . . . . . 7  |-  ( ( n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) ) : NN --> RR*  ->  ran  ( n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) ) 
C_  RR* )
2927, 28syl 17 . . . . . 6  |-  ( ph  ->  ran  ( n  e.  NN  |->  ( S.2 `  (
x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) ) 
C_  RR* )
306rexrd 10089 . . . . . 6  |-  ( ph  ->  ( ( S.2 `  F
)  -  ( C  /  2 ) )  e.  RR* )
31 supxrleub 12156 . . . . . 6  |-  ( ( ran  ( n  e.  NN  |->  ( S.2 `  (
x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) ) 
C_  RR*  /\  ( ( S.2 `  F )  -  ( C  / 
2 ) )  e. 
RR* )  ->  ( sup ( ran  ( n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) ) ,  RR* ,  <  )  <_  ( ( S.2 `  F
)  -  ( C  /  2 ) )  <->  A. z  e.  ran  ( n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) ) z  <_  ( ( S.2 `  F )  -  ( C  /  2 ) ) ) )
3229, 30, 31syl2anc 693 . . . . 5  |-  ( ph  ->  ( sup ( ran  ( n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) ) , 
RR* ,  <  )  <_ 
( ( S.2 `  F
)  -  ( C  /  2 ) )  <->  A. z  e.  ran  ( n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) ) z  <_  ( ( S.2 `  F )  -  ( C  /  2 ) ) ) )
33 itg2cn.2 . . . . . . 7  |-  ( ph  ->  F  e. MblFn )
349, 33, 1itg2cnlem1 23528 . . . . . 6  |-  ( ph  ->  sup ( ran  (
n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) ) , 
RR* ,  <  )  =  ( S.2 `  F
) )
3534breq1d 4663 . . . . 5  |-  ( ph  ->  ( sup ( ran  ( n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) ) , 
RR* ,  <  )  <_ 
( ( S.2 `  F
)  -  ( C  /  2 ) )  <-> 
( S.2 `  F )  <_  ( ( S.2 `  F )  -  ( C  /  2 ) ) ) )
36 ffn 6045 . . . . . . 7  |-  ( ( n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) ) : NN --> RR*  ->  ( n  e.  NN  |->  ( S.2 `  (
x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) )  Fn  NN )
3727, 36syl 17 . . . . . 6  |-  ( ph  ->  ( n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) )  Fn  NN )
38 breq1 4656 . . . . . . . 8  |-  ( z  =  ( ( n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) ) `
 m )  -> 
( z  <_  (
( S.2 `  F )  -  ( C  / 
2 ) )  <->  ( (
n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) ) `  m )  <_  (
( S.2 `  F )  -  ( C  / 
2 ) ) ) )
3938ralrn 6362 . . . . . . 7  |-  ( ( n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) )  Fn  NN  ->  ( A. z  e.  ran  ( n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) ) z  <_  ( ( S.2 `  F )  -  ( C  /  2
) )  <->  A. m  e.  NN  ( ( n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) ) `
 m )  <_ 
( ( S.2 `  F
)  -  ( C  /  2 ) ) ) )
40 breq2 4657 . . . . . . . . . . . . 13  |-  ( n  =  m  ->  (
( F `  x
)  <_  n  <->  ( F `  x )  <_  m
) )
4140ifbid 4108 . . . . . . . . . . . 12  |-  ( n  =  m  ->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 )  =  if ( ( F `  x
)  <_  m , 
( F `  x
) ,  0 ) )
4241mpteq2dv 4745 . . . . . . . . . . 11  |-  ( n  =  m  ->  (
x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )
4342fveq2d 6195 . . . . . . . . . 10  |-  ( n  =  m  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) )  =  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) ) )
44 fvex 6201 . . . . . . . . . 10  |-  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )  e. 
_V
4543, 26, 44fvmpt 6282 . . . . . . . . 9  |-  ( m  e.  NN  ->  (
( n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) ) `  m )  =  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  m , 
( F `  x
) ,  0 ) ) ) )
4645breq1d 4663 . . . . . . . 8  |-  ( m  e.  NN  ->  (
( ( n  e.  NN  |->  ( S.2 `  (
x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) ) `
 m )  <_ 
( ( S.2 `  F
)  -  ( C  /  2 ) )  <-> 
( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  m , 
( F `  x
) ,  0 ) ) )  <_  (
( S.2 `  F )  -  ( C  / 
2 ) ) ) )
4746ralbiia 2979 . . . . . . 7  |-  ( A. m  e.  NN  (
( n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) ) `  m )  <_  (
( S.2 `  F )  -  ( C  / 
2 ) )  <->  A. m  e.  NN  ( S.2 `  (
x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )  <_ 
( ( S.2 `  F
)  -  ( C  /  2 ) ) )
4839, 47syl6bb 276 . . . . . 6  |-  ( ( n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) )  Fn  NN  ->  ( A. z  e.  ran  ( n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) ) z  <_  ( ( S.2 `  F )  -  ( C  /  2
) )  <->  A. m  e.  NN  ( S.2 `  (
x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )  <_ 
( ( S.2 `  F
)  -  ( C  /  2 ) ) ) )
4937, 48syl 17 . . . . 5  |-  ( ph  ->  ( A. z  e. 
ran  ( n  e.  NN  |->  ( S.2 `  (
x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) ) z  <_  ( ( S.2 `  F )  -  ( C  /  2
) )  <->  A. m  e.  NN  ( S.2 `  (
x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )  <_ 
( ( S.2 `  F
)  -  ( C  /  2 ) ) ) )
5032, 35, 493bitr3d 298 . . . 4  |-  ( ph  ->  ( ( S.2 `  F
)  <_  ( ( S.2 `  F )  -  ( C  /  2
) )  <->  A. m  e.  NN  ( S.2 `  (
x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )  <_ 
( ( S.2 `  F
)  -  ( C  /  2 ) ) ) )
518, 50mtbid 314 . . 3  |-  ( ph  ->  -.  A. m  e.  NN  ( S.2 `  (
x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )  <_ 
( ( S.2 `  F
)  -  ( C  /  2 ) ) )
52 rexnal 2995 . . 3  |-  ( E. m  e.  NN  -.  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  m , 
( F `  x
) ,  0 ) ) )  <_  (
( S.2 `  F )  -  ( C  / 
2 ) )  <->  -.  A. m  e.  NN  ( S.2 `  (
x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )  <_ 
( ( S.2 `  F
)  -  ( C  /  2 ) ) )
5351, 52sylibr 224 . 2  |-  ( ph  ->  E. m  e.  NN  -.  ( S.2 `  (
x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )  <_ 
( ( S.2 `  F
)  -  ( C  /  2 ) ) )
549adantr 481 . . . 4  |-  ( (
ph  /\  ( m  e.  NN  /\  -.  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )  <_  ( ( S.2 `  F )  -  ( C  /  2
) ) ) )  ->  F : RR --> ( 0 [,) +oo ) )
5533adantr 481 . . . 4  |-  ( (
ph  /\  ( m  e.  NN  /\  -.  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )  <_  ( ( S.2 `  F )  -  ( C  /  2
) ) ) )  ->  F  e. MblFn )
561adantr 481 . . . 4  |-  ( (
ph  /\  ( m  e.  NN  /\  -.  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )  <_  ( ( S.2 `  F )  -  ( C  /  2
) ) ) )  ->  ( S.2 `  F
)  e.  RR )
572adantr 481 . . . 4  |-  ( (
ph  /\  ( m  e.  NN  /\  -.  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )  <_  ( ( S.2 `  F )  -  ( C  /  2
) ) ) )  ->  C  e.  RR+ )
58 simprl 794 . . . 4  |-  ( (
ph  /\  ( m  e.  NN  /\  -.  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )  <_  ( ( S.2 `  F )  -  ( C  /  2
) ) ) )  ->  m  e.  NN )
59 simprr 796 . . . . 5  |-  ( (
ph  /\  ( m  e.  NN  /\  -.  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )  <_  ( ( S.2 `  F )  -  ( C  /  2
) ) ) )  ->  -.  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )  <_ 
( ( S.2 `  F
)  -  ( C  /  2 ) ) )
60 fveq2 6191 . . . . . . . . . 10  |-  ( x  =  y  ->  ( F `  x )  =  ( F `  y ) )
6160breq1d 4663 . . . . . . . . 9  |-  ( x  =  y  ->  (
( F `  x
)  <_  m  <->  ( F `  y )  <_  m
) )
6261, 60ifbieq1d 4109 . . . . . . . 8  |-  ( x  =  y  ->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 )  =  if ( ( F `  y
)  <_  m , 
( F `  y
) ,  0 ) )
6362cbvmptv 4750 . . . . . . 7  |-  ( x  e.  RR  |->  if ( ( F `  x
)  <_  m , 
( F `  x
) ,  0 ) )  =  ( y  e.  RR  |->  if ( ( F `  y
)  <_  m , 
( F `  y
) ,  0 ) )
6463fveq2i 6194 . . . . . 6  |-  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )  =  ( S.2 `  (
y  e.  RR  |->  if ( ( F `  y )  <_  m ,  ( F `  y ) ,  0 ) ) )
6564breq1i 4660 . . . . 5  |-  ( ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  m , 
( F `  x
) ,  0 ) ) )  <_  (
( S.2 `  F )  -  ( C  / 
2 ) )  <->  ( S.2 `  ( y  e.  RR  |->  if ( ( F `  y )  <_  m ,  ( F `  y ) ,  0 ) ) )  <_ 
( ( S.2 `  F
)  -  ( C  /  2 ) ) )
6659, 65sylnib 318 . . . 4  |-  ( (
ph  /\  ( m  e.  NN  /\  -.  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )  <_  ( ( S.2 `  F )  -  ( C  /  2
) ) ) )  ->  -.  ( S.2 `  ( y  e.  RR  |->  if ( ( F `  y )  <_  m ,  ( F `  y ) ,  0 ) ) )  <_ 
( ( S.2 `  F
)  -  ( C  /  2 ) ) )
6754, 55, 56, 57, 58, 66itg2cnlem2 23529 . . 3  |-  ( (
ph  /\  ( m  e.  NN  /\  -.  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )  <_  ( ( S.2 `  F )  -  ( C  /  2
) ) ) )  ->  E. d  e.  RR+  A. u  e.  dom  vol ( ( vol `  u
)  <  d  ->  ( S.2 `  ( y  e.  RR  |->  if ( y  e.  u ,  ( F `  y
) ,  0 ) ) )  <  C
) )
68 elequ1 1997 . . . . . . . . . 10  |-  ( x  =  y  ->  (
x  e.  u  <->  y  e.  u ) )
6968, 60ifbieq1d 4109 . . . . . . . . 9  |-  ( x  =  y  ->  if ( x  e.  u ,  ( F `  x ) ,  0 )  =  if ( y  e.  u ,  ( F `  y
) ,  0 ) )
7069cbvmptv 4750 . . . . . . . 8  |-  ( x  e.  RR  |->  if ( x  e.  u ,  ( F `  x
) ,  0 ) )  =  ( y  e.  RR  |->  if ( y  e.  u ,  ( F `  y
) ,  0 ) )
7170fveq2i 6194 . . . . . . 7  |-  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  u ,  ( F `  x ) ,  0 ) ) )  =  ( S.2 `  (
y  e.  RR  |->  if ( y  e.  u ,  ( F `  y ) ,  0 ) ) )
7271breq1i 4660 . . . . . 6  |-  ( ( S.2 `  ( x  e.  RR  |->  if ( x  e.  u ,  ( F `  x
) ,  0 ) ) )  <  C  <->  ( S.2 `  ( y  e.  RR  |->  if ( y  e.  u ,  ( F `  y
) ,  0 ) ) )  <  C
)
7372imbi2i 326 . . . . 5  |-  ( ( ( vol `  u
)  <  d  ->  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  u ,  ( F `  x
) ,  0 ) ) )  <  C
)  <->  ( ( vol `  u )  <  d  ->  ( S.2 `  (
y  e.  RR  |->  if ( y  e.  u ,  ( F `  y ) ,  0 ) ) )  < 
C ) )
7473ralbii 2980 . . . 4  |-  ( A. u  e.  dom  vol (
( vol `  u
)  <  d  ->  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  u ,  ( F `  x
) ,  0 ) ) )  <  C
)  <->  A. u  e.  dom  vol ( ( vol `  u
)  <  d  ->  ( S.2 `  ( y  e.  RR  |->  if ( y  e.  u ,  ( F `  y
) ,  0 ) ) )  <  C
) )
7574rexbii 3041 . . 3  |-  ( E. d  e.  RR+  A. u  e.  dom  vol ( ( vol `  u )  <  d  ->  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  u ,  ( F `  x ) ,  0 ) ) )  <  C )  <->  E. d  e.  RR+  A. u  e.  dom  vol ( ( vol `  u )  <  d  ->  ( S.2 `  ( y  e.  RR  |->  if ( y  e.  u ,  ( F `  y ) ,  0 ) ) )  <  C ) )
7667, 75sylibr 224 . 2  |-  ( (
ph  /\  ( m  e.  NN  /\  -.  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )  <_  ( ( S.2 `  F )  -  ( C  /  2
) ) ) )  ->  E. d  e.  RR+  A. u  e.  dom  vol ( ( vol `  u
)  <  d  ->  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  u ,  ( F `  x
) ,  0 ) ) )  <  C
) )
7753, 76rexlimddv 3035 1  |-  ( ph  ->  E. d  e.  RR+  A. u  e.  dom  vol ( ( vol `  u
)  <  d  ->  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  u ,  ( F `  x
) ,  0 ) ) )  <  C
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    e. wcel 1990   A.wral 2912   E.wrex 2913    C_ wss 3574   ifcif 4086   class class class wbr 4653    |-> cmpt 4729   dom cdm 5114   ran crn 5115    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   supcsup 8346   RRcr 9935   0cc0 9936   +oocpnf 10071   RR*cxr 10073    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   NNcn 11020   2c2 11070   RR+crp 11832   [,)cico 12177   [,]cicc 12178   volcvol 23232  MblFncmbf 23383   S.2citg2 23385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-rest 16083  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-bases 20750  df-cmp 21190  df-ovol 23233  df-vol 23234  df-mbf 23388  df-itg1 23389  df-itg2 23390  df-0p 23437
This theorem is referenced by:  itgcn  23609
  Copyright terms: Public domain W3C validator