Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  igenval Structured version   Visualization version   Unicode version

Theorem igenval 33860
Description: The ideal generated by a subset of a ring. (Contributed by Jeff Madsen, 10-Jun-2010.) (Proof shortened by Mario Carneiro, 20-Dec-2013.)
Hypotheses
Ref Expression
igenval.1  |-  G  =  ( 1st `  R
)
igenval.2  |-  X  =  ran  G
Assertion
Ref Expression
igenval  |-  ( ( R  e.  RingOps  /\  S  C_  X )  ->  ( R  IdlGen  S )  = 
|^| { j  e.  ( Idl `  R )  |  S  C_  j } )
Distinct variable groups:    R, j    S, j    j, X
Allowed substitution hint:    G( j)

Proof of Theorem igenval
Dummy variables  r 
s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 igenval.1 . . . . . 6  |-  G  =  ( 1st `  R
)
2 igenval.2 . . . . . 6  |-  X  =  ran  G
31, 2rngoidl 33823 . . . . 5  |-  ( R  e.  RingOps  ->  X  e.  ( Idl `  R ) )
4 sseq2 3627 . . . . . 6  |-  ( j  =  X  ->  ( S  C_  j  <->  S  C_  X
) )
54rspcev 3309 . . . . 5  |-  ( ( X  e.  ( Idl `  R )  /\  S  C_  X )  ->  E. j  e.  ( Idl `  R
) S  C_  j
)
63, 5sylan 488 . . . 4  |-  ( ( R  e.  RingOps  /\  S  C_  X )  ->  E. j  e.  ( Idl `  R
) S  C_  j
)
7 rabn0 3958 . . . 4  |-  ( { j  e.  ( Idl `  R )  |  S  C_  j }  =/=  (/)  <->  E. j  e.  ( Idl `  R
) S  C_  j
)
86, 7sylibr 224 . . 3  |-  ( ( R  e.  RingOps  /\  S  C_  X )  ->  { j  e.  ( Idl `  R
)  |  S  C_  j }  =/=  (/) )
9 intex 4820 . . 3  |-  ( { j  e.  ( Idl `  R )  |  S  C_  j }  =/=  (/)  <->  |^| { j  e.  ( Idl `  R
)  |  S  C_  j }  e.  _V )
108, 9sylib 208 . 2  |-  ( ( R  e.  RingOps  /\  S  C_  X )  ->  |^| { j  e.  ( Idl `  R
)  |  S  C_  j }  e.  _V )
11 fvex 6201 . . . . . . 7  |-  ( 1st `  R )  e.  _V
121, 11eqeltri 2697 . . . . . 6  |-  G  e. 
_V
1312rnex 7100 . . . . 5  |-  ran  G  e.  _V
142, 13eqeltri 2697 . . . 4  |-  X  e. 
_V
1514elpw2 4828 . . 3  |-  ( S  e.  ~P X  <->  S  C_  X
)
16 simpl 473 . . . . . . 7  |-  ( ( r  =  R  /\  s  =  S )  ->  r  =  R )
1716fveq2d 6195 . . . . . 6  |-  ( ( r  =  R  /\  s  =  S )  ->  ( Idl `  r
)  =  ( Idl `  R ) )
18 sseq1 3626 . . . . . . 7  |-  ( s  =  S  ->  (
s  C_  j  <->  S  C_  j
) )
1918adantl 482 . . . . . 6  |-  ( ( r  =  R  /\  s  =  S )  ->  ( s  C_  j  <->  S 
C_  j ) )
2017, 19rabeqbidv 3195 . . . . 5  |-  ( ( r  =  R  /\  s  =  S )  ->  { j  e.  ( Idl `  r )  |  s  C_  j }  =  { j  e.  ( Idl `  R
)  |  S  C_  j } )
2120inteqd 4480 . . . 4  |-  ( ( r  =  R  /\  s  =  S )  ->  |^| { j  e.  ( Idl `  r
)  |  s  C_  j }  =  |^| { j  e.  ( Idl `  R )  |  S  C_  j } )
22 fveq2 6191 . . . . . . . 8  |-  ( r  =  R  ->  ( 1st `  r )  =  ( 1st `  R
) )
2322, 1syl6eqr 2674 . . . . . . 7  |-  ( r  =  R  ->  ( 1st `  r )  =  G )
2423rneqd 5353 . . . . . 6  |-  ( r  =  R  ->  ran  ( 1st `  r )  =  ran  G )
2524, 2syl6eqr 2674 . . . . 5  |-  ( r  =  R  ->  ran  ( 1st `  r )  =  X )
2625pweqd 4163 . . . 4  |-  ( r  =  R  ->  ~P ran  ( 1st `  r
)  =  ~P X
)
27 df-igen 33859 . . . 4  |-  IdlGen  =  ( r  e.  RingOps ,  s  e.  ~P ran  ( 1st `  r )  |->  |^|
{ j  e.  ( Idl `  r )  |  s  C_  j } )
2821, 26, 27ovmpt2x 6789 . . 3  |-  ( ( R  e.  RingOps  /\  S  e.  ~P X  /\  |^| { j  e.  ( Idl `  R )  |  S  C_  j }  e.  _V )  ->  ( R  IdlGen  S )  =  |^| { j  e.  ( Idl `  R
)  |  S  C_  j } )
2915, 28syl3an2br 1366 . 2  |-  ( ( R  e.  RingOps  /\  S  C_  X  /\  |^| { j  e.  ( Idl `  R
)  |  S  C_  j }  e.  _V )  ->  ( R  IdlGen  S )  =  |^| { j  e.  ( Idl `  R
)  |  S  C_  j } )
3010, 29mpd3an3 1425 1  |-  ( ( R  e.  RingOps  /\  S  C_  X )  ->  ( R  IdlGen  S )  = 
|^| { j  e.  ( Idl `  R )  |  S  C_  j } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913   {crab 2916   _Vcvv 3200    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   |^|cint 4475   ran crn 5115   ` cfv 5888  (class class class)co 6650   1stc1st 7166   RingOpscrngo 33693   Idlcidl 33806    IdlGen cigen 33858
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fo 5894  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-grpo 27347  df-gid 27348  df-ablo 27399  df-rngo 33694  df-idl 33809  df-igen 33859
This theorem is referenced by:  igenss  33861  igenidl  33862  igenmin  33863  igenidl2  33864  igenval2  33865
  Copyright terms: Public domain W3C validator