Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  igenval2 Structured version   Visualization version   Unicode version

Theorem igenval2 33865
Description: The ideal generated by a subset of a ring. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
igenval2.1  |-  G  =  ( 1st `  R
)
igenval2.2  |-  X  =  ran  G
Assertion
Ref Expression
igenval2  |-  ( ( R  e.  RingOps  /\  S  C_  X )  ->  (
( R  IdlGen  S )  =  I  <->  ( I  e.  ( Idl `  R
)  /\  S  C_  I  /\  A. j  e.  ( Idl `  R ) ( S  C_  j  ->  I  C_  j )
) ) )
Distinct variable groups:    R, j    S, j    j, I
Allowed substitution hints:    G( j)    X( j)

Proof of Theorem igenval2
Dummy variable  i is distinct from all other variables.
StepHypRef Expression
1 igenval2.1 . . . . 5  |-  G  =  ( 1st `  R
)
2 igenval2.2 . . . . 5  |-  X  =  ran  G
31, 2igenidl 33862 . . . 4  |-  ( ( R  e.  RingOps  /\  S  C_  X )  ->  ( R  IdlGen  S )  e.  ( Idl `  R
) )
41, 2igenss 33861 . . . 4  |-  ( ( R  e.  RingOps  /\  S  C_  X )  ->  S  C_  ( R  IdlGen  S ) )
5 igenmin 33863 . . . . . . 7  |-  ( ( R  e.  RingOps  /\  j  e.  ( Idl `  R
)  /\  S  C_  j
)  ->  ( R  IdlGen  S )  C_  j
)
653expia 1267 . . . . . 6  |-  ( ( R  e.  RingOps  /\  j  e.  ( Idl `  R
) )  ->  ( S  C_  j  ->  ( R  IdlGen  S )  C_  j ) )
76ralrimiva 2966 . . . . 5  |-  ( R  e.  RingOps  ->  A. j  e.  ( Idl `  R ) ( S  C_  j  ->  ( R  IdlGen  S ) 
C_  j ) )
87adantr 481 . . . 4  |-  ( ( R  e.  RingOps  /\  S  C_  X )  ->  A. j  e.  ( Idl `  R
) ( S  C_  j  ->  ( R  IdlGen  S )  C_  j )
)
93, 4, 83jca 1242 . . 3  |-  ( ( R  e.  RingOps  /\  S  C_  X )  ->  (
( R  IdlGen  S )  e.  ( Idl `  R
)  /\  S  C_  ( R  IdlGen  S )  /\  A. j  e.  ( Idl `  R ) ( S 
C_  j  ->  ( R  IdlGen  S )  C_  j ) ) )
10 eleq1 2689 . . . 4  |-  ( ( R  IdlGen  S )  =  I  ->  ( ( R  IdlGen  S )  e.  ( Idl `  R
)  <->  I  e.  ( Idl `  R ) ) )
11 sseq2 3627 . . . 4  |-  ( ( R  IdlGen  S )  =  I  ->  ( S  C_  ( R  IdlGen  S )  <-> 
S  C_  I )
)
12 sseq1 3626 . . . . . 6  |-  ( ( R  IdlGen  S )  =  I  ->  ( ( R  IdlGen  S )  C_  j 
<->  I  C_  j )
)
1312imbi2d 330 . . . . 5  |-  ( ( R  IdlGen  S )  =  I  ->  ( ( S  C_  j  ->  ( R  IdlGen  S )  C_  j )  <->  ( S  C_  j  ->  I  C_  j
) ) )
1413ralbidv 2986 . . . 4  |-  ( ( R  IdlGen  S )  =  I  ->  ( A. j  e.  ( Idl `  R ) ( S 
C_  j  ->  ( R  IdlGen  S )  C_  j )  <->  A. j  e.  ( Idl `  R
) ( S  C_  j  ->  I  C_  j
) ) )
1510, 11, 143anbi123d 1399 . . 3  |-  ( ( R  IdlGen  S )  =  I  ->  ( (
( R  IdlGen  S )  e.  ( Idl `  R
)  /\  S  C_  ( R  IdlGen  S )  /\  A. j  e.  ( Idl `  R ) ( S 
C_  j  ->  ( R  IdlGen  S )  C_  j ) )  <->  ( I  e.  ( Idl `  R
)  /\  S  C_  I  /\  A. j  e.  ( Idl `  R ) ( S  C_  j  ->  I  C_  j )
) ) )
169, 15syl5ibcom 235 . 2  |-  ( ( R  e.  RingOps  /\  S  C_  X )  ->  (
( R  IdlGen  S )  =  I  ->  (
I  e.  ( Idl `  R )  /\  S  C_  I  /\  A. j  e.  ( Idl `  R
) ( S  C_  j  ->  I  C_  j
) ) ) )
17 igenmin 33863 . . . . . 6  |-  ( ( R  e.  RingOps  /\  I  e.  ( Idl `  R
)  /\  S  C_  I
)  ->  ( R  IdlGen  S )  C_  I
)
18173adant3r3 1276 . . . . 5  |-  ( ( R  e.  RingOps  /\  (
I  e.  ( Idl `  R )  /\  S  C_  I  /\  A. j  e.  ( Idl `  R
) ( S  C_  j  ->  I  C_  j
) ) )  -> 
( R  IdlGen  S ) 
C_  I )
1918adantlr 751 . . . 4  |-  ( ( ( R  e.  RingOps  /\  S  C_  X )  /\  ( I  e.  ( Idl `  R )  /\  S  C_  I  /\  A. j  e.  ( Idl `  R ) ( S 
C_  j  ->  I  C_  j ) ) )  ->  ( R  IdlGen  S )  C_  I )
20 ssint 4493 . . . . . . . 8  |-  ( I 
C_  |^| { i  e.  ( Idl `  R
)  |  S  C_  i }  <->  A. j  e.  {
i  e.  ( Idl `  R )  |  S  C_  i } I  C_  j )
21 sseq2 3627 . . . . . . . . 9  |-  ( i  =  j  ->  ( S  C_  i  <->  S  C_  j
) )
2221ralrab 3368 . . . . . . . 8  |-  ( A. j  e.  { i  e.  ( Idl `  R
)  |  S  C_  i } I  C_  j  <->  A. j  e.  ( Idl `  R ) ( S 
C_  j  ->  I  C_  j ) )
2320, 22sylbbr 226 . . . . . . 7  |-  ( A. j  e.  ( Idl `  R ) ( S 
C_  j  ->  I  C_  j )  ->  I  C_ 
|^| { i  e.  ( Idl `  R )  |  S  C_  i } )
24233ad2ant3 1084 . . . . . 6  |-  ( ( I  e.  ( Idl `  R )  /\  S  C_  I  /\  A. j  e.  ( Idl `  R
) ( S  C_  j  ->  I  C_  j
) )  ->  I  C_ 
|^| { i  e.  ( Idl `  R )  |  S  C_  i } )
2524adantl 482 . . . . 5  |-  ( ( ( R  e.  RingOps  /\  S  C_  X )  /\  ( I  e.  ( Idl `  R )  /\  S  C_  I  /\  A. j  e.  ( Idl `  R ) ( S 
C_  j  ->  I  C_  j ) ) )  ->  I  C_  |^| { i  e.  ( Idl `  R
)  |  S  C_  i } )
261, 2igenval 33860 . . . . . 6  |-  ( ( R  e.  RingOps  /\  S  C_  X )  ->  ( R  IdlGen  S )  = 
|^| { i  e.  ( Idl `  R )  |  S  C_  i } )
2726adantr 481 . . . . 5  |-  ( ( ( R  e.  RingOps  /\  S  C_  X )  /\  ( I  e.  ( Idl `  R )  /\  S  C_  I  /\  A. j  e.  ( Idl `  R ) ( S 
C_  j  ->  I  C_  j ) ) )  ->  ( R  IdlGen  S )  =  |^| { i  e.  ( Idl `  R
)  |  S  C_  i } )
2825, 27sseqtr4d 3642 . . . 4  |-  ( ( ( R  e.  RingOps  /\  S  C_  X )  /\  ( I  e.  ( Idl `  R )  /\  S  C_  I  /\  A. j  e.  ( Idl `  R ) ( S 
C_  j  ->  I  C_  j ) ) )  ->  I  C_  ( R  IdlGen  S ) )
2919, 28eqssd 3620 . . 3  |-  ( ( ( R  e.  RingOps  /\  S  C_  X )  /\  ( I  e.  ( Idl `  R )  /\  S  C_  I  /\  A. j  e.  ( Idl `  R ) ( S 
C_  j  ->  I  C_  j ) ) )  ->  ( R  IdlGen  S )  =  I )
3029ex 450 . 2  |-  ( ( R  e.  RingOps  /\  S  C_  X )  ->  (
( I  e.  ( Idl `  R )  /\  S  C_  I  /\  A. j  e.  ( Idl `  R ) ( S  C_  j  ->  I  C_  j )
)  ->  ( R  IdlGen  S )  =  I ) )
3116, 30impbid 202 1  |-  ( ( R  e.  RingOps  /\  S  C_  X )  ->  (
( R  IdlGen  S )  =  I  <->  ( I  e.  ( Idl `  R
)  /\  S  C_  I  /\  A. j  e.  ( Idl `  R ) ( S  C_  j  ->  I  C_  j )
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916    C_ wss 3574   |^|cint 4475   ran crn 5115   ` cfv 5888  (class class class)co 6650   1stc1st 7166   RingOpscrngo 33693   Idlcidl 33806    IdlGen cigen 33858
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fo 5894  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-grpo 27347  df-gid 27348  df-ablo 27399  df-rngo 33694  df-idl 33809  df-igen 33859
This theorem is referenced by:  prnc  33866
  Copyright terms: Public domain W3C validator