Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  indpreima Structured version   Visualization version   Unicode version

Theorem indpreima 30087
Description: A function with range  { 0 ,  1 } as an indicator of the preimage of  { 1 }. (Contributed by Thierry Arnoux, 23-Aug-2017.)
Assertion
Ref Expression
indpreima  |-  ( ( O  e.  V  /\  F : O --> { 0 ,  1 } )  ->  F  =  ( (𝟭 `  O ) `  ( `' F " { 1 } ) ) )

Proof of Theorem indpreima
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ffn 6045 . . 3  |-  ( F : O --> { 0 ,  1 }  ->  F  Fn  O )
21adantl 482 . 2  |-  ( ( O  e.  V  /\  F : O --> { 0 ,  1 } )  ->  F  Fn  O
)
3 cnvimass 5485 . . . . 5  |-  ( `' F " { 1 } )  C_  dom  F
4 fdm 6051 . . . . . 6  |-  ( F : O --> { 0 ,  1 }  ->  dom 
F  =  O )
54adantl 482 . . . . 5  |-  ( ( O  e.  V  /\  F : O --> { 0 ,  1 } )  ->  dom  F  =  O )
63, 5syl5sseq 3653 . . . 4  |-  ( ( O  e.  V  /\  F : O --> { 0 ,  1 } )  ->  ( `' F " { 1 } ) 
C_  O )
7 indf 30077 . . . 4  |-  ( ( O  e.  V  /\  ( `' F " { 1 } )  C_  O
)  ->  ( (𝟭 `  O ) `  ( `' F " { 1 } ) ) : O --> { 0 ,  1 } )
86, 7syldan 487 . . 3  |-  ( ( O  e.  V  /\  F : O --> { 0 ,  1 } )  ->  ( (𝟭 `  O
) `  ( `' F " { 1 } ) ) : O --> { 0 ,  1 } )
9 ffn 6045 . . 3  |-  ( ( (𝟭 `  O ) `  ( `' F " { 1 } ) ) : O --> { 0 ,  1 }  ->  ( (𝟭 `  O ) `  ( `' F " { 1 } ) )  Fn  O )
108, 9syl 17 . 2  |-  ( ( O  e.  V  /\  F : O --> { 0 ,  1 } )  ->  ( (𝟭 `  O
) `  ( `' F " { 1 } ) )  Fn  O
)
11 simpr 477 . . . . 5  |-  ( ( O  e.  V  /\  F : O --> { 0 ,  1 } )  ->  F : O --> { 0 ,  1 } )
1211ffvelrnda 6359 . . . 4  |-  ( ( ( O  e.  V  /\  F : O --> { 0 ,  1 } )  /\  x  e.  O
)  ->  ( F `  x )  e.  {
0 ,  1 } )
13 prcom 4267 . . . 4  |-  { 0 ,  1 }  =  { 1 ,  0 }
1412, 13syl6eleq 2711 . . 3  |-  ( ( ( O  e.  V  /\  F : O --> { 0 ,  1 } )  /\  x  e.  O
)  ->  ( F `  x )  e.  {
1 ,  0 } )
158ffvelrnda 6359 . . . 4  |-  ( ( ( O  e.  V  /\  F : O --> { 0 ,  1 } )  /\  x  e.  O
)  ->  ( (
(𝟭 `  O ) `  ( `' F " { 1 } ) ) `  x )  e.  {
0 ,  1 } )
1615, 13syl6eleq 2711 . . 3  |-  ( ( ( O  e.  V  /\  F : O --> { 0 ,  1 } )  /\  x  e.  O
)  ->  ( (
(𝟭 `  O ) `  ( `' F " { 1 } ) ) `  x )  e.  {
1 ,  0 } )
17 simpll 790 . . . . 5  |-  ( ( ( O  e.  V  /\  F : O --> { 0 ,  1 } )  /\  x  e.  O
)  ->  O  e.  V )
186adantr 481 . . . . 5  |-  ( ( ( O  e.  V  /\  F : O --> { 0 ,  1 } )  /\  x  e.  O
)  ->  ( `' F " { 1 } )  C_  O )
19 simpr 477 . . . . 5  |-  ( ( ( O  e.  V  /\  F : O --> { 0 ,  1 } )  /\  x  e.  O
)  ->  x  e.  O )
20 ind1a 30081 . . . . 5  |-  ( ( O  e.  V  /\  ( `' F " { 1 } )  C_  O  /\  x  e.  O
)  ->  ( (
( (𝟭 `  O ) `  ( `' F " { 1 } ) ) `  x )  =  1  <->  x  e.  ( `' F " { 1 } ) ) )
2117, 18, 19, 20syl3anc 1326 . . . 4  |-  ( ( ( O  e.  V  /\  F : O --> { 0 ,  1 } )  /\  x  e.  O
)  ->  ( (
( (𝟭 `  O ) `  ( `' F " { 1 } ) ) `  x )  =  1  <->  x  e.  ( `' F " { 1 } ) ) )
22 fniniseg 6338 . . . . . 6  |-  ( F  Fn  O  ->  (
x  e.  ( `' F " { 1 } )  <->  ( x  e.  O  /\  ( F `  x )  =  1 ) ) )
232, 22syl 17 . . . . 5  |-  ( ( O  e.  V  /\  F : O --> { 0 ,  1 } )  ->  ( x  e.  ( `' F " { 1 } )  <-> 
( x  e.  O  /\  ( F `  x
)  =  1 ) ) )
2423baibd 948 . . . 4  |-  ( ( ( O  e.  V  /\  F : O --> { 0 ,  1 } )  /\  x  e.  O
)  ->  ( x  e.  ( `' F " { 1 } )  <-> 
( F `  x
)  =  1 ) )
2521, 24bitr2d 269 . . 3  |-  ( ( ( O  e.  V  /\  F : O --> { 0 ,  1 } )  /\  x  e.  O
)  ->  ( ( F `  x )  =  1  <->  ( (
(𝟭 `  O ) `  ( `' F " { 1 } ) ) `  x )  =  1 ) )
2614, 16, 25elpreq 29360 . 2  |-  ( ( ( O  e.  V  /\  F : O --> { 0 ,  1 } )  /\  x  e.  O
)  ->  ( F `  x )  =  ( ( (𝟭 `  O
) `  ( `' F " { 1 } ) ) `  x
) )
272, 10, 26eqfnfvd 6314 1  |-  ( ( O  e.  V  /\  F : O --> { 0 ,  1 } )  ->  F  =  ( (𝟭 `  O ) `  ( `' F " { 1 } ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    C_ wss 3574   {csn 4177   {cpr 4179   `'ccnv 5113   dom cdm 5114   "cima 5117    Fn wfn 5883   -->wf 5884   ` cfv 5888   0cc0 9936   1c1 9937  𝟭cind 30072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-i2m1 10004  ax-1ne0 10005  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-ind 30073
This theorem is referenced by:  indf1ofs  30088
  Copyright terms: Public domain W3C validator