Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  indf1ofs Structured version   Visualization version   Unicode version

Theorem indf1ofs 30088
Description: The bijection between finite subsets and the indicator functions with finite support. (Contributed by Thierry Arnoux, 22-Aug-2017.)
Assertion
Ref Expression
indf1ofs  |-  ( O  e.  V  ->  (
(𝟭 `  O )  |`  Fin ) : ( ~P O  i^i  Fin ) -1-1-onto-> {
f  e.  ( { 0 ,  1 }  ^m  O )  |  ( `' f " { 1 } )  e.  Fin } )
Distinct variable group:    f, O
Allowed substitution hint:    V( f)

Proof of Theorem indf1ofs
Dummy variables  a 
g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 indf1o 30086 . . . 4  |-  ( O  e.  V  ->  (𝟭 `  O ) : ~P O
-1-1-onto-> ( { 0 ,  1 }  ^m  O ) )
2 f1of1 6136 . . . 4  |-  ( (𝟭 `  O ) : ~P O
-1-1-onto-> ( { 0 ,  1 }  ^m  O )  ->  (𝟭 `  O ) : ~P O -1-1-> ( { 0 ,  1 }  ^m  O ) )
31, 2syl 17 . . 3  |-  ( O  e.  V  ->  (𝟭 `  O ) : ~P O -1-1-> ( { 0 ,  1 }  ^m  O ) )
4 inss1 3833 . . 3  |-  ( ~P O  i^i  Fin )  C_ 
~P O
5 f1ores 6151 . . 3  |-  ( ( (𝟭 `  O ) : ~P O -1-1-> ( { 0 ,  1 }  ^m  O )  /\  ( ~P O  i^i  Fin )  C_  ~P O )  ->  ( (𝟭 `  O
)  |`  ( ~P O  i^i  Fin ) ) : ( ~P O  i^i  Fin ) -1-1-onto-> ( (𝟭 `  O
) " ( ~P O  i^i  Fin )
) )
63, 4, 5sylancl 694 . 2  |-  ( O  e.  V  ->  (
(𝟭 `  O )  |`  ( ~P O  i^i  Fin ) ) : ( ~P O  i^i  Fin )
-1-1-onto-> ( (𝟭 `  O ) " ( ~P O  i^i  Fin ) ) )
7 resres 5409 . . . 4  |-  ( ( (𝟭 `  O )  |` 
~P O )  |`  Fin )  =  (
(𝟭 `  O )  |`  ( ~P O  i^i  Fin ) )
8 f1ofn 6138 . . . . . 6  |-  ( (𝟭 `  O ) : ~P O
-1-1-onto-> ( { 0 ,  1 }  ^m  O )  ->  (𝟭 `  O )  Fn  ~P O )
9 fnresdm 6000 . . . . . 6  |-  ( (𝟭 `  O )  Fn  ~P O  ->  ( (𝟭 `  O
)  |`  ~P O )  =  (𝟭 `  O
) )
101, 8, 93syl 18 . . . . 5  |-  ( O  e.  V  ->  (
(𝟭 `  O )  |`  ~P O )  =  (𝟭 `  O ) )
1110reseq1d 5395 . . . 4  |-  ( O  e.  V  ->  (
( (𝟭 `  O )  |` 
~P O )  |`  Fin )  =  (
(𝟭 `  O )  |`  Fin ) )
127, 11syl5eqr 2670 . . 3  |-  ( O  e.  V  ->  (
(𝟭 `  O )  |`  ( ~P O  i^i  Fin ) )  =  ( (𝟭 `  O )  |` 
Fin ) )
13 eqidd 2623 . . 3  |-  ( O  e.  V  ->  ( ~P O  i^i  Fin )  =  ( ~P O  i^i  Fin ) )
14 simpll 790 . . . . . . . . . 10  |-  ( ( ( O  e.  V  /\  a  e.  ( ~P O  i^i  Fin )
)  /\  ( (𝟭 `  O ) `  a
)  =  g )  ->  O  e.  V
)
15 simpr 477 . . . . . . . . . . . . . . 15  |-  ( ( O  e.  V  /\  a  e.  ( ~P O  i^i  Fin ) )  ->  a  e.  ( ~P O  i^i  Fin ) )
164, 15sseldi 3601 . . . . . . . . . . . . . 14  |-  ( ( O  e.  V  /\  a  e.  ( ~P O  i^i  Fin ) )  ->  a  e.  ~P O )
1716elpwid 4170 . . . . . . . . . . . . 13  |-  ( ( O  e.  V  /\  a  e.  ( ~P O  i^i  Fin ) )  ->  a  C_  O
)
18 indf 30077 . . . . . . . . . . . . 13  |-  ( ( O  e.  V  /\  a  C_  O )  -> 
( (𝟭 `  O ) `  a ) : O --> { 0 ,  1 } )
1917, 18syldan 487 . . . . . . . . . . . 12  |-  ( ( O  e.  V  /\  a  e.  ( ~P O  i^i  Fin ) )  ->  ( (𝟭 `  O
) `  a ) : O --> { 0 ,  1 } )
2019adantr 481 . . . . . . . . . . 11  |-  ( ( ( O  e.  V  /\  a  e.  ( ~P O  i^i  Fin )
)  /\  ( (𝟭 `  O ) `  a
)  =  g )  ->  ( (𝟭 `  O
) `  a ) : O --> { 0 ,  1 } )
21 simpr 477 . . . . . . . . . . . 12  |-  ( ( ( O  e.  V  /\  a  e.  ( ~P O  i^i  Fin )
)  /\  ( (𝟭 `  O ) `  a
)  =  g )  ->  ( (𝟭 `  O
) `  a )  =  g )
2221feq1d 6030 . . . . . . . . . . 11  |-  ( ( ( O  e.  V  /\  a  e.  ( ~P O  i^i  Fin )
)  /\  ( (𝟭 `  O ) `  a
)  =  g )  ->  ( ( (𝟭 `  O ) `  a
) : O --> { 0 ,  1 }  <->  g : O
--> { 0 ,  1 } ) )
2320, 22mpbid 222 . . . . . . . . . 10  |-  ( ( ( O  e.  V  /\  a  e.  ( ~P O  i^i  Fin )
)  /\  ( (𝟭 `  O ) `  a
)  =  g )  ->  g : O --> { 0 ,  1 } )
24 prex 4909 . . . . . . . . . . . 12  |-  { 0 ,  1 }  e.  _V
25 elmapg 7870 . . . . . . . . . . . 12  |-  ( ( { 0 ,  1 }  e.  _V  /\  O  e.  V )  ->  ( g  e.  ( { 0 ,  1 }  ^m  O )  <-> 
g : O --> { 0 ,  1 } ) )
2624, 25mpan 706 . . . . . . . . . . 11  |-  ( O  e.  V  ->  (
g  e.  ( { 0 ,  1 }  ^m  O )  <->  g : O
--> { 0 ,  1 } ) )
2726biimpar 502 . . . . . . . . . 10  |-  ( ( O  e.  V  /\  g : O --> { 0 ,  1 } )  ->  g  e.  ( { 0 ,  1 }  ^m  O ) )
2814, 23, 27syl2anc 693 . . . . . . . . 9  |-  ( ( ( O  e.  V  /\  a  e.  ( ~P O  i^i  Fin )
)  /\  ( (𝟭 `  O ) `  a
)  =  g )  ->  g  e.  ( { 0 ,  1 }  ^m  O ) )
2921cnveqd 5298 . . . . . . . . . . 11  |-  ( ( ( O  e.  V  /\  a  e.  ( ~P O  i^i  Fin )
)  /\  ( (𝟭 `  O ) `  a
)  =  g )  ->  `' ( (𝟭 `  O ) `  a
)  =  `' g )
3029imaeq1d 5465 . . . . . . . . . 10  |-  ( ( ( O  e.  V  /\  a  e.  ( ~P O  i^i  Fin )
)  /\  ( (𝟭 `  O ) `  a
)  =  g )  ->  ( `' ( (𝟭 `  O ) `  a ) " {
1 } )  =  ( `' g " { 1 } ) )
31 indpi1 30082 . . . . . . . . . . . . 13  |-  ( ( O  e.  V  /\  a  C_  O )  -> 
( `' ( (𝟭 `  O ) `  a
) " { 1 } )  =  a )
3217, 31syldan 487 . . . . . . . . . . . 12  |-  ( ( O  e.  V  /\  a  e.  ( ~P O  i^i  Fin ) )  ->  ( `' ( (𝟭 `  O ) `  a ) " {
1 } )  =  a )
33 inss2 3834 . . . . . . . . . . . . 13  |-  ( ~P O  i^i  Fin )  C_ 
Fin
3433, 15sseldi 3601 . . . . . . . . . . . 12  |-  ( ( O  e.  V  /\  a  e.  ( ~P O  i^i  Fin ) )  ->  a  e.  Fin )
3532, 34eqeltrd 2701 . . . . . . . . . . 11  |-  ( ( O  e.  V  /\  a  e.  ( ~P O  i^i  Fin ) )  ->  ( `' ( (𝟭 `  O ) `  a ) " {
1 } )  e. 
Fin )
3635adantr 481 . . . . . . . . . 10  |-  ( ( ( O  e.  V  /\  a  e.  ( ~P O  i^i  Fin )
)  /\  ( (𝟭 `  O ) `  a
)  =  g )  ->  ( `' ( (𝟭 `  O ) `  a ) " {
1 } )  e. 
Fin )
3730, 36eqeltrrd 2702 . . . . . . . . 9  |-  ( ( ( O  e.  V  /\  a  e.  ( ~P O  i^i  Fin )
)  /\  ( (𝟭 `  O ) `  a
)  =  g )  ->  ( `' g
" { 1 } )  e.  Fin )
3828, 37jca 554 . . . . . . . 8  |-  ( ( ( O  e.  V  /\  a  e.  ( ~P O  i^i  Fin )
)  /\  ( (𝟭 `  O ) `  a
)  =  g )  ->  ( g  e.  ( { 0 ,  1 }  ^m  O
)  /\  ( `' g " { 1 } )  e.  Fin )
)
3938ex 450 . . . . . . 7  |-  ( ( O  e.  V  /\  a  e.  ( ~P O  i^i  Fin ) )  ->  ( ( (𝟭 `  O ) `  a
)  =  g  -> 
( g  e.  ( { 0 ,  1 }  ^m  O )  /\  ( `' g
" { 1 } )  e.  Fin )
) )
4039rexlimdva 3031 . . . . . 6  |-  ( O  e.  V  ->  ( E. a  e.  ( ~P O  i^i  Fin )
( (𝟭 `  O ) `  a )  =  g  ->  ( g  e.  ( { 0 ,  1 }  ^m  O
)  /\  ( `' g " { 1 } )  e.  Fin )
) )
41 cnvimass 5485 . . . . . . . . . 10  |-  ( `' g " { 1 } )  C_  dom  g
4226biimpa 501 . . . . . . . . . . . 12  |-  ( ( O  e.  V  /\  g  e.  ( {
0 ,  1 }  ^m  O ) )  ->  g : O --> { 0 ,  1 } )
43 fdm 6051 . . . . . . . . . . . 12  |-  ( g : O --> { 0 ,  1 }  ->  dom  g  =  O )
4442, 43syl 17 . . . . . . . . . . 11  |-  ( ( O  e.  V  /\  g  e.  ( {
0 ,  1 }  ^m  O ) )  ->  dom  g  =  O )
4544adantrr 753 . . . . . . . . . 10  |-  ( ( O  e.  V  /\  ( g  e.  ( { 0 ,  1 }  ^m  O )  /\  ( `' g
" { 1 } )  e.  Fin )
)  ->  dom  g  =  O )
4641, 45syl5sseq 3653 . . . . . . . . 9  |-  ( ( O  e.  V  /\  ( g  e.  ( { 0 ,  1 }  ^m  O )  /\  ( `' g
" { 1 } )  e.  Fin )
)  ->  ( `' g " { 1 } )  C_  O )
47 simprr 796 . . . . . . . . 9  |-  ( ( O  e.  V  /\  ( g  e.  ( { 0 ,  1 }  ^m  O )  /\  ( `' g
" { 1 } )  e.  Fin )
)  ->  ( `' g " { 1 } )  e.  Fin )
48 elfpw 8268 . . . . . . . . 9  |-  ( ( `' g " {
1 } )  e.  ( ~P O  i^i  Fin )  <->  ( ( `' g " { 1 } )  C_  O  /\  ( `' g " { 1 } )  e.  Fin ) )
4946, 47, 48sylanbrc 698 . . . . . . . 8  |-  ( ( O  e.  V  /\  ( g  e.  ( { 0 ,  1 }  ^m  O )  /\  ( `' g
" { 1 } )  e.  Fin )
)  ->  ( `' g " { 1 } )  e.  ( ~P O  i^i  Fin )
)
50 indpreima 30087 . . . . . . . . . . 11  |-  ( ( O  e.  V  /\  g : O --> { 0 ,  1 } )  ->  g  =  ( (𝟭 `  O ) `  ( `' g " { 1 } ) ) )
5150eqcomd 2628 . . . . . . . . . 10  |-  ( ( O  e.  V  /\  g : O --> { 0 ,  1 } )  ->  ( (𝟭 `  O
) `  ( `' g " { 1 } ) )  =  g )
5242, 51syldan 487 . . . . . . . . 9  |-  ( ( O  e.  V  /\  g  e.  ( {
0 ,  1 }  ^m  O ) )  ->  ( (𝟭 `  O
) `  ( `' g " { 1 } ) )  =  g )
5352adantrr 753 . . . . . . . 8  |-  ( ( O  e.  V  /\  ( g  e.  ( { 0 ,  1 }  ^m  O )  /\  ( `' g
" { 1 } )  e.  Fin )
)  ->  ( (𝟭 `  O ) `  ( `' g " {
1 } ) )  =  g )
54 fveq2 6191 . . . . . . . . . 10  |-  ( a  =  ( `' g
" { 1 } )  ->  ( (𝟭 `  O ) `  a
)  =  ( (𝟭 `  O ) `  ( `' g " {
1 } ) ) )
5554eqeq1d 2624 . . . . . . . . 9  |-  ( a  =  ( `' g
" { 1 } )  ->  ( (
(𝟭 `  O ) `  a )  =  g  <-> 
( (𝟭 `  O ) `  ( `' g " { 1 } ) )  =  g ) )
5655rspcev 3309 . . . . . . . 8  |-  ( ( ( `' g " { 1 } )  e.  ( ~P O  i^i  Fin )  /\  (
(𝟭 `  O ) `  ( `' g " {
1 } ) )  =  g )  ->  E. a  e.  ( ~P O  i^i  Fin )
( (𝟭 `  O ) `  a )  =  g )
5749, 53, 56syl2anc 693 . . . . . . 7  |-  ( ( O  e.  V  /\  ( g  e.  ( { 0 ,  1 }  ^m  O )  /\  ( `' g
" { 1 } )  e.  Fin )
)  ->  E. a  e.  ( ~P O  i^i  Fin ) ( (𝟭 `  O
) `  a )  =  g )
5857ex 450 . . . . . 6  |-  ( O  e.  V  ->  (
( g  e.  ( { 0 ,  1 }  ^m  O )  /\  ( `' g
" { 1 } )  e.  Fin )  ->  E. a  e.  ( ~P O  i^i  Fin ) ( (𝟭 `  O
) `  a )  =  g ) )
5940, 58impbid 202 . . . . 5  |-  ( O  e.  V  ->  ( E. a  e.  ( ~P O  i^i  Fin )
( (𝟭 `  O ) `  a )  =  g  <-> 
( g  e.  ( { 0 ,  1 }  ^m  O )  /\  ( `' g
" { 1 } )  e.  Fin )
) )
601, 8syl 17 . . . . . 6  |-  ( O  e.  V  ->  (𝟭 `  O )  Fn  ~P O )
61 fvelimab 6253 . . . . . 6  |-  ( ( (𝟭 `  O )  Fn  ~P O  /\  ( ~P O  i^i  Fin )  C_ 
~P O )  -> 
( g  e.  ( (𝟭 `  O ) " ( ~P O  i^i  Fin ) )  <->  E. a  e.  ( ~P O  i^i  Fin ) ( (𝟭 `  O
) `  a )  =  g ) )
6260, 4, 61sylancl 694 . . . . 5  |-  ( O  e.  V  ->  (
g  e.  ( (𝟭 `  O ) " ( ~P O  i^i  Fin )
)  <->  E. a  e.  ( ~P O  i^i  Fin ) ( (𝟭 `  O
) `  a )  =  g ) )
63 cnveq 5296 . . . . . . . . 9  |-  ( f  =  g  ->  `' f  =  `' g
)
6463imaeq1d 5465 . . . . . . . 8  |-  ( f  =  g  ->  ( `' f " {
1 } )  =  ( `' g " { 1 } ) )
6564eleq1d 2686 . . . . . . 7  |-  ( f  =  g  ->  (
( `' f " { 1 } )  e.  Fin  <->  ( `' g " { 1 } )  e.  Fin )
)
6665elrab 3363 . . . . . 6  |-  ( g  e.  { f  e.  ( { 0 ,  1 }  ^m  O
)  |  ( `' f " { 1 } )  e.  Fin }  <-> 
( g  e.  ( { 0 ,  1 }  ^m  O )  /\  ( `' g
" { 1 } )  e.  Fin )
)
6766a1i 11 . . . . 5  |-  ( O  e.  V  ->  (
g  e.  { f  e.  ( { 0 ,  1 }  ^m  O )  |  ( `' f " {
1 } )  e. 
Fin }  <->  ( g  e.  ( { 0 ,  1 }  ^m  O
)  /\  ( `' g " { 1 } )  e.  Fin )
) )
6859, 62, 673bitr4d 300 . . . 4  |-  ( O  e.  V  ->  (
g  e.  ( (𝟭 `  O ) " ( ~P O  i^i  Fin )
)  <->  g  e.  {
f  e.  ( { 0 ,  1 }  ^m  O )  |  ( `' f " { 1 } )  e.  Fin } ) )
6968eqrdv 2620 . . 3  |-  ( O  e.  V  ->  (
(𝟭 `  O ) "
( ~P O  i^i  Fin ) )  =  {
f  e.  ( { 0 ,  1 }  ^m  O )  |  ( `' f " { 1 } )  e.  Fin } )
7012, 13, 69f1oeq123d 6133 . 2  |-  ( O  e.  V  ->  (
( (𝟭 `  O )  |`  ( ~P O  i^i  Fin ) ) : ( ~P O  i^i  Fin )
-1-1-onto-> ( (𝟭 `  O ) " ( ~P O  i^i  Fin ) )  <->  ( (𝟭 `  O )  |`  Fin ) : ( ~P O  i^i  Fin ) -1-1-onto-> { f  e.  ( { 0 ,  1 }  ^m  O )  |  ( `' f
" { 1 } )  e.  Fin }
) )
716, 70mpbid 222 1  |-  ( O  e.  V  ->  (
(𝟭 `  O )  |`  Fin ) : ( ~P O  i^i  Fin ) -1-1-onto-> {
f  e.  ( { 0 ,  1 }  ^m  O )  |  ( `' f " { 1 } )  e.  Fin } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913   {crab 2916   _Vcvv 3200    i^i cin 3573    C_ wss 3574   ~Pcpw 4158   {csn 4177   {cpr 4179   `'ccnv 5113   dom cdm 5114    |` cres 5116   "cima 5117    Fn wfn 5883   -->wf 5884   -1-1->wf1 5885   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   Fincfn 7955   0cc0 9936   1c1 9937  𝟭cind 30072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-i2m1 10004  ax-1ne0 10005  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-ind 30073
This theorem is referenced by:  eulerpartgbij  30434
  Copyright terms: Public domain W3C validator