| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isinftm | Structured version Visualization version Unicode version | ||
| Description: Express |
| Ref | Expression |
|---|---|
| inftm.b |
|
| inftm.0 |
|
| inftm.x |
|
| inftm.l |
|
| Ref | Expression |
|---|---|
| isinftm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2689 |
. . . . . 6
| |
| 2 | eleq1 2689 |
. . . . . 6
| |
| 3 | 1, 2 | bi2anan9 917 |
. . . . 5
|
| 4 | simpl 473 |
. . . . . . 7
| |
| 5 | 4 | breq2d 4665 |
. . . . . 6
|
| 6 | 4 | oveq2d 6666 |
. . . . . . . 8
|
| 7 | simpr 477 |
. . . . . . . 8
| |
| 8 | 6, 7 | breq12d 4666 |
. . . . . . 7
|
| 9 | 8 | ralbidv 2986 |
. . . . . 6
|
| 10 | 5, 9 | anbi12d 747 |
. . . . 5
|
| 11 | 3, 10 | anbi12d 747 |
. . . 4
|
| 12 | eqid 2622 |
. . . 4
| |
| 13 | 11, 12 | brabga 4989 |
. . 3
|
| 14 | 13 | 3adant1 1079 |
. 2
|
| 15 | elex 3212 |
. . . . 5
| |
| 16 | 15 | 3ad2ant1 1082 |
. . . 4
|
| 17 | fveq2 6191 |
. . . . . . . . . 10
| |
| 18 | inftm.b |
. . . . . . . . . 10
| |
| 19 | 17, 18 | syl6eqr 2674 |
. . . . . . . . 9
|
| 20 | 19 | eleq2d 2687 |
. . . . . . . 8
|
| 21 | 19 | eleq2d 2687 |
. . . . . . . 8
|
| 22 | 20, 21 | anbi12d 747 |
. . . . . . 7
|
| 23 | fveq2 6191 |
. . . . . . . . . 10
| |
| 24 | inftm.0 |
. . . . . . . . . 10
| |
| 25 | 23, 24 | syl6eqr 2674 |
. . . . . . . . 9
|
| 26 | fveq2 6191 |
. . . . . . . . . 10
| |
| 27 | inftm.l |
. . . . . . . . . 10
| |
| 28 | 26, 27 | syl6eqr 2674 |
. . . . . . . . 9
|
| 29 | eqidd 2623 |
. . . . . . . . 9
| |
| 30 | 25, 28, 29 | breq123d 4667 |
. . . . . . . 8
|
| 31 | fveq2 6191 |
. . . . . . . . . . . 12
| |
| 32 | inftm.x |
. . . . . . . . . . . 12
| |
| 33 | 31, 32 | syl6eqr 2674 |
. . . . . . . . . . 11
|
| 34 | 33 | oveqd 6667 |
. . . . . . . . . 10
|
| 35 | eqidd 2623 |
. . . . . . . . . 10
| |
| 36 | 34, 28, 35 | breq123d 4667 |
. . . . . . . . 9
|
| 37 | 36 | ralbidv 2986 |
. . . . . . . 8
|
| 38 | 30, 37 | anbi12d 747 |
. . . . . . 7
|
| 39 | 22, 38 | anbi12d 747 |
. . . . . 6
|
| 40 | 39 | opabbidv 4716 |
. . . . 5
|
| 41 | df-inftm 29732 |
. . . . 5
| |
| 42 | fvex 6201 |
. . . . . . . 8
| |
| 43 | 18, 42 | eqeltri 2697 |
. . . . . . 7
|
| 44 | 43, 43 | xpex 6962 |
. . . . . 6
|
| 45 | opabssxp 5193 |
. . . . . 6
| |
| 46 | 44, 45 | ssexi 4803 |
. . . . 5
|
| 47 | 40, 41, 46 | fvmpt 6282 |
. . . 4
|
| 48 | 16, 47 | syl 17 |
. . 3
|
| 49 | 48 | breqd 4664 |
. 2
|
| 50 | 3simpc 1060 |
. . 3
| |
| 51 | 50 | biantrurd 529 |
. 2
|
| 52 | 14, 49, 51 | 3bitr4d 300 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-inftm 29732 |
| This theorem is referenced by: pnfinf 29737 isarchi2 29739 |
| Copyright terms: Public domain | W3C validator |