MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ioorval Structured version   Visualization version   Unicode version

Theorem ioorval 23342
Description: Define a function from open intervals to their endpoints. (Contributed by Mario Carneiro, 26-Mar-2015.) (Revised by AV, 13-Sep-2020.)
Hypothesis
Ref Expression
ioorf.1  |-  F  =  ( x  e.  ran  (,)  |->  if ( x  =  (/) ,  <. 0 ,  0
>. ,  <.inf ( x ,  RR* ,  <  ) ,  sup ( x , 
RR* ,  <  ) >.
) )
Assertion
Ref Expression
ioorval  |-  ( A  e.  ran  (,)  ->  ( F `  A )  =  if ( A  =  (/) ,  <. 0 ,  0 >. ,  <.inf ( A ,  RR* ,  <  ) ,  sup ( A ,  RR* ,  <  ) >. ) )
Distinct variable group:    x, A
Allowed substitution hint:    F( x)

Proof of Theorem ioorval
StepHypRef Expression
1 eqeq1 2626 . . 3  |-  ( x  =  A  ->  (
x  =  (/)  <->  A  =  (/) ) )
2 infeq1 8382 . . . 4  |-  ( x  =  A  -> inf ( x ,  RR* ,  <  )  = inf ( A ,  RR* ,  <  ) )
3 supeq1 8351 . . . 4  |-  ( x  =  A  ->  sup ( x ,  RR* ,  <  )  =  sup ( A ,  RR* ,  <  ) )
42, 3opeq12d 4410 . . 3  |-  ( x  =  A  ->  <.inf ( x ,  RR* ,  <  ) ,  sup ( x , 
RR* ,  <  ) >.  =  <.inf ( A ,  RR* ,  <  ) ,  sup ( A ,  RR* ,  <  ) >.
)
51, 4ifbieq2d 4111 . 2  |-  ( x  =  A  ->  if ( x  =  (/) ,  <. 0 ,  0 >. , 
<.inf ( x ,  RR* ,  <  ) ,  sup ( x ,  RR* ,  <  ) >. )  =  if ( A  =  (/) ,  <. 0 ,  0
>. ,  <.inf ( A ,  RR* ,  <  ) ,  sup ( A ,  RR* ,  <  ) >.
) )
6 ioorf.1 . 2  |-  F  =  ( x  e.  ran  (,)  |->  if ( x  =  (/) ,  <. 0 ,  0
>. ,  <.inf ( x ,  RR* ,  <  ) ,  sup ( x , 
RR* ,  <  ) >.
) )
7 opex 4932 . . 3  |-  <. 0 ,  0 >.  e.  _V
8 opex 4932 . . 3  |-  <.inf ( A ,  RR* ,  <  ) ,  sup ( A ,  RR* ,  <  ) >.  e.  _V
97, 8ifex 4156 . 2  |-  if ( A  =  (/) ,  <. 0 ,  0 >. , 
<.inf ( A ,  RR* ,  <  ) ,  sup ( A ,  RR* ,  <  )
>. )  e.  _V
105, 6, 9fvmpt 6282 1  |-  ( A  e.  ran  (,)  ->  ( F `  A )  =  if ( A  =  (/) ,  <. 0 ,  0 >. ,  <.inf ( A ,  RR* ,  <  ) ,  sup ( A ,  RR* ,  <  ) >. ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   (/)c0 3915   ifcif 4086   <.cop 4183    |-> cmpt 4729   ran crn 5115   ` cfv 5888   supcsup 8346  infcinf 8347   0cc0 9936   RR*cxr 10073    < clt 10074   (,)cioo 12175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-sup 8348  df-inf 8349
This theorem is referenced by:  ioorinv2  23343  ioorinv  23344  ioorcl  23345
  Copyright terms: Public domain W3C validator