MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ioorcl Structured version   Visualization version   Unicode version

Theorem ioorcl 23345
Description: The function  F does not always return real numbers, but it does on intervals of finite volume. (Contributed by Mario Carneiro, 26-Mar-2015.) (Revised by AV, 13-Sep-2020.)
Hypothesis
Ref Expression
ioorf.1  |-  F  =  ( x  e.  ran  (,)  |->  if ( x  =  (/) ,  <. 0 ,  0
>. ,  <.inf ( x ,  RR* ,  <  ) ,  sup ( x , 
RR* ,  <  ) >.
) )
Assertion
Ref Expression
ioorcl  |-  ( ( A  e.  ran  (,)  /\  ( vol* `  A )  e.  RR )  ->  ( F `  A )  e.  (  <_  i^i  ( RR  X.  RR ) ) )
Distinct variable group:    x, A
Allowed substitution hint:    F( x)

Proof of Theorem ioorcl
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss1 3833 . . 3  |-  (  <_  i^i  ( RR*  X.  RR* )
)  C_  <_
2 ioorf.1 . . . . . 6  |-  F  =  ( x  e.  ran  (,)  |->  if ( x  =  (/) ,  <. 0 ,  0
>. ,  <.inf ( x ,  RR* ,  <  ) ,  sup ( x , 
RR* ,  <  ) >.
) )
32ioorf 23341 . . . . 5  |-  F : ran  (,) --> (  <_  i^i  ( RR*  X.  RR* )
)
43ffvelrni 6358 . . . 4  |-  ( A  e.  ran  (,)  ->  ( F `  A )  e.  (  <_  i^i  ( RR*  X.  RR* )
) )
54adantr 481 . . 3  |-  ( ( A  e.  ran  (,)  /\  ( vol* `  A )  e.  RR )  ->  ( F `  A )  e.  (  <_  i^i  ( RR*  X. 
RR* ) ) )
61, 5sseldi 3601 . 2  |-  ( ( A  e.  ran  (,)  /\  ( vol* `  A )  e.  RR )  ->  ( F `  A )  e.  <_  )
72ioorval 23342 . . . . . 6  |-  ( A  e.  ran  (,)  ->  ( F `  A )  =  if ( A  =  (/) ,  <. 0 ,  0 >. ,  <.inf ( A ,  RR* ,  <  ) ,  sup ( A ,  RR* ,  <  ) >. ) )
87adantr 481 . . . . 5  |-  ( ( A  e.  ran  (,)  /\  ( vol* `  A )  e.  RR )  ->  ( F `  A )  =  if ( A  =  (/) , 
<. 0 ,  0
>. ,  <.inf ( A ,  RR* ,  <  ) ,  sup ( A ,  RR* ,  <  ) >.
) )
9 iftrue 4092 . . . . 5  |-  ( A  =  (/)  ->  if ( A  =  (/) ,  <. 0 ,  0 >. , 
<.inf ( A ,  RR* ,  <  ) ,  sup ( A ,  RR* ,  <  )
>. )  =  <. 0 ,  0 >. )
108, 9sylan9eq 2676 . . . 4  |-  ( ( ( A  e.  ran  (,) 
/\  ( vol* `  A )  e.  RR )  /\  A  =  (/) )  ->  ( F `  A )  =  <. 0 ,  0 >. )
11 0re 10040 . . . . 5  |-  0  e.  RR
12 opelxpi 5148 . . . . 5  |-  ( ( 0  e.  RR  /\  0  e.  RR )  -> 
<. 0 ,  0
>.  e.  ( RR  X.  RR ) )
1311, 11, 12mp2an 708 . . . 4  |-  <. 0 ,  0 >.  e.  ( RR  X.  RR )
1410, 13syl6eqel 2709 . . 3  |-  ( ( ( A  e.  ran  (,) 
/\  ( vol* `  A )  e.  RR )  /\  A  =  (/) )  ->  ( F `  A )  e.  ( RR  X.  RR ) )
15 ioof 12271 . . . . . 6  |-  (,) :
( RR*  X.  RR* ) --> ~P RR
16 ffn 6045 . . . . . 6  |-  ( (,)
: ( RR*  X.  RR* )
--> ~P RR  ->  (,)  Fn  ( RR*  X.  RR* )
)
17 ovelrn 6810 . . . . . 6  |-  ( (,) 
Fn  ( RR*  X.  RR* )  ->  ( A  e. 
ran  (,)  <->  E. a  e.  RR*  E. b  e.  RR*  A  =  ( a (,) b ) ) )
1815, 16, 17mp2b 10 . . . . 5  |-  ( A  e.  ran  (,)  <->  E. a  e.  RR*  E. b  e. 
RR*  A  =  (
a (,) b ) )
192ioorinv2 23343 . . . . . . . . . 10  |-  ( ( a (,) b )  =/=  (/)  ->  ( F `  ( a (,) b
) )  =  <. a ,  b >. )
2019adantl 482 . . . . . . . . 9  |-  ( ( ( vol* `  ( a (,) b
) )  e.  RR  /\  ( a (,) b
)  =/=  (/) )  -> 
( F `  (
a (,) b ) )  =  <. a ,  b >. )
21 ioorcl2 23340 . . . . . . . . . . 11  |-  ( ( ( a (,) b
)  =/=  (/)  /\  ( vol* `  ( a (,) b ) )  e.  RR )  -> 
( a  e.  RR  /\  b  e.  RR ) )
2221ancoms 469 . . . . . . . . . 10  |-  ( ( ( vol* `  ( a (,) b
) )  e.  RR  /\  ( a (,) b
)  =/=  (/) )  -> 
( a  e.  RR  /\  b  e.  RR ) )
23 opelxpi 5148 . . . . . . . . . 10  |-  ( ( a  e.  RR  /\  b  e.  RR )  -> 
<. a ,  b >.  e.  ( RR  X.  RR ) )
2422, 23syl 17 . . . . . . . . 9  |-  ( ( ( vol* `  ( a (,) b
) )  e.  RR  /\  ( a (,) b
)  =/=  (/) )  ->  <. a ,  b >.  e.  ( RR  X.  RR ) )
2520, 24eqeltrd 2701 . . . . . . . 8  |-  ( ( ( vol* `  ( a (,) b
) )  e.  RR  /\  ( a (,) b
)  =/=  (/) )  -> 
( F `  (
a (,) b ) )  e.  ( RR 
X.  RR ) )
26 fveq2 6191 . . . . . . . . . . 11  |-  ( A  =  ( a (,) b )  ->  ( vol* `  A )  =  ( vol* `  ( a (,) b
) ) )
2726eleq1d 2686 . . . . . . . . . 10  |-  ( A  =  ( a (,) b )  ->  (
( vol* `  A )  e.  RR  <->  ( vol* `  (
a (,) b ) )  e.  RR ) )
28 neeq1 2856 . . . . . . . . . 10  |-  ( A  =  ( a (,) b )  ->  ( A  =/=  (/)  <->  ( a (,) b )  =/=  (/) ) )
2927, 28anbi12d 747 . . . . . . . . 9  |-  ( A  =  ( a (,) b )  ->  (
( ( vol* `  A )  e.  RR  /\  A  =/=  (/) )  <->  ( ( vol* `  ( a (,) b ) )  e.  RR  /\  (
a (,) b )  =/=  (/) ) ) )
30 fveq2 6191 . . . . . . . . . 10  |-  ( A  =  ( a (,) b )  ->  ( F `  A )  =  ( F `  ( a (,) b
) ) )
3130eleq1d 2686 . . . . . . . . 9  |-  ( A  =  ( a (,) b )  ->  (
( F `  A
)  e.  ( RR 
X.  RR )  <->  ( F `  ( a (,) b
) )  e.  ( RR  X.  RR ) ) )
3229, 31imbi12d 334 . . . . . . . 8  |-  ( A  =  ( a (,) b )  ->  (
( ( ( vol* `  A )  e.  RR  /\  A  =/=  (/) )  ->  ( F `
 A )  e.  ( RR  X.  RR ) )  <->  ( (
( vol* `  ( a (,) b
) )  e.  RR  /\  ( a (,) b
)  =/=  (/) )  -> 
( F `  (
a (,) b ) )  e.  ( RR 
X.  RR ) ) ) )
3325, 32mpbiri 248 . . . . . . 7  |-  ( A  =  ( a (,) b )  ->  (
( ( vol* `  A )  e.  RR  /\  A  =/=  (/) )  -> 
( F `  A
)  e.  ( RR 
X.  RR ) ) )
3433a1i 11 . . . . . 6  |-  ( ( a  e.  RR*  /\  b  e.  RR* )  ->  ( A  =  ( a (,) b )  ->  (
( ( vol* `  A )  e.  RR  /\  A  =/=  (/) )  -> 
( F `  A
)  e.  ( RR 
X.  RR ) ) ) )
3534rexlimivv 3036 . . . . 5  |-  ( E. a  e.  RR*  E. b  e.  RR*  A  =  ( a (,) b )  ->  ( ( ( vol* `  A
)  e.  RR  /\  A  =/=  (/) )  ->  ( F `  A )  e.  ( RR  X.  RR ) ) )
3618, 35sylbi 207 . . . 4  |-  ( A  e.  ran  (,)  ->  ( ( ( vol* `  A )  e.  RR  /\  A  =/=  (/) )  -> 
( F `  A
)  e.  ( RR 
X.  RR ) ) )
3736impl 650 . . 3  |-  ( ( ( A  e.  ran  (,) 
/\  ( vol* `  A )  e.  RR )  /\  A  =/=  (/) )  -> 
( F `  A
)  e.  ( RR 
X.  RR ) )
3814, 37pm2.61dane 2881 . 2  |-  ( ( A  e.  ran  (,)  /\  ( vol* `  A )  e.  RR )  ->  ( F `  A )  e.  ( RR  X.  RR ) )
396, 38elind 3798 1  |-  ( ( A  e.  ran  (,)  /\  ( vol* `  A )  e.  RR )  ->  ( F `  A )  e.  (  <_  i^i  ( RR  X.  RR ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913    i^i cin 3573   (/)c0 3915   ifcif 4086   ~Pcpw 4158   <.cop 4183    |-> cmpt 4729    X. cxp 5112   ran crn 5115    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   supcsup 8346  infcinf 8347   RRcr 9935   0cc0 9936   RR*cxr 10073    < clt 10074    <_ cle 10075   (,)cioo 12175   vol*covol 23231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-rest 16083  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-bases 20750  df-cmp 21190  df-ovol 23233  df-vol 23234
This theorem is referenced by:  uniioombllem2  23351
  Copyright terms: Public domain W3C validator