MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ioorf Structured version   Visualization version   Unicode version

Theorem ioorf 23341
Description: Define a function from open intervals to their endpoints. (Contributed by Mario Carneiro, 26-Mar-2015.) (Revised by AV, 13-Sep-2020.)
Hypothesis
Ref Expression
ioorf.1  |-  F  =  ( x  e.  ran  (,)  |->  if ( x  =  (/) ,  <. 0 ,  0
>. ,  <.inf ( x ,  RR* ,  <  ) ,  sup ( x , 
RR* ,  <  ) >.
) )
Assertion
Ref Expression
ioorf  |-  F : ran  (,) --> (  <_  i^i  ( RR*  X.  RR* )
)

Proof of Theorem ioorf
Dummy variables  a 
b  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioorf.1 . 2  |-  F  =  ( x  e.  ran  (,)  |->  if ( x  =  (/) ,  <. 0 ,  0
>. ,  <.inf ( x ,  RR* ,  <  ) ,  sup ( x , 
RR* ,  <  ) >.
) )
2 ioof 12271 . . . 4  |-  (,) :
( RR*  X.  RR* ) --> ~P RR
3 ffn 6045 . . . 4  |-  ( (,)
: ( RR*  X.  RR* )
--> ~P RR  ->  (,)  Fn  ( RR*  X.  RR* )
)
4 ovelrn 6810 . . . 4  |-  ( (,) 
Fn  ( RR*  X.  RR* )  ->  ( x  e. 
ran  (,)  <->  E. a  e.  RR*  E. b  e.  RR*  x  =  ( a (,) b ) ) )
52, 3, 4mp2b 10 . . 3  |-  ( x  e.  ran  (,)  <->  E. a  e.  RR*  E. b  e. 
RR*  x  =  ( a (,) b ) )
6 0le0 11110 . . . . . . . . 9  |-  0  <_  0
7 df-br 4654 . . . . . . . . 9  |-  ( 0  <_  0  <->  <. 0 ,  0 >.  e.  <_  )
86, 7mpbi 220 . . . . . . . 8  |-  <. 0 ,  0 >.  e.  <_
9 0xr 10086 . . . . . . . . 9  |-  0  e.  RR*
10 opelxpi 5148 . . . . . . . . 9  |-  ( ( 0  e.  RR*  /\  0  e.  RR* )  ->  <. 0 ,  0 >.  e.  (
RR*  X.  RR* ) )
119, 9, 10mp2an 708 . . . . . . . 8  |-  <. 0 ,  0 >.  e.  (
RR*  X.  RR* )
12 elin 3796 . . . . . . . 8  |-  ( <.
0 ,  0 >.  e.  (  <_  i^i  ( RR*  X.  RR* ) )  <->  ( <. 0 ,  0 >.  e. 
<_  /\  <. 0 ,  0
>.  e.  ( RR*  X.  RR* ) ) )
138, 11, 12mpbir2an 955 . . . . . . 7  |-  <. 0 ,  0 >.  e.  (  <_  i^i  ( RR*  X. 
RR* ) )
1413a1i 11 . . . . . 6  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  x  =  (/) )  ->  <. 0 ,  0 >.  e.  (  <_  i^i  ( RR*  X. 
RR* ) ) )
15 simplr 792 . . . . . . . . . 10  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  ->  x  =  ( a (,) b ) )
1615infeq1d 8383 . . . . . . . . 9  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  -> inf ( x ,  RR* ,  <  )  = inf (
( a (,) b
) ,  RR* ,  <  ) )
17 simplll 798 . . . . . . . . . 10  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  -> 
a  e.  RR* )
18 simpllr 799 . . . . . . . . . 10  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  -> 
b  e.  RR* )
19 simpr 477 . . . . . . . . . . . 12  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  ->  -.  x  =  (/) )
2019neqned 2801 . . . . . . . . . . 11  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  ->  x  =/=  (/) )
2115, 20eqnetrrd 2862 . . . . . . . . . 10  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  -> 
( a (,) b
)  =/=  (/) )
22 df-ioo 12179 . . . . . . . . . . 11  |-  (,)  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <  z  /\  z  <  y ) } )
23 idd 24 . . . . . . . . . . 11  |-  ( ( w  e.  RR*  /\  b  e.  RR* )  ->  (
w  <  b  ->  w  <  b ) )
24 xrltle 11982 . . . . . . . . . . 11  |-  ( ( w  e.  RR*  /\  b  e.  RR* )  ->  (
w  <  b  ->  w  <_  b ) )
25 idd 24 . . . . . . . . . . 11  |-  ( ( a  e.  RR*  /\  w  e.  RR* )  ->  (
a  <  w  ->  a  <  w ) )
26 xrltle 11982 . . . . . . . . . . 11  |-  ( ( a  e.  RR*  /\  w  e.  RR* )  ->  (
a  <  w  ->  a  <_  w ) )
2722, 23, 24, 25, 26ixxlb 12197 . . . . . . . . . 10  |-  ( ( a  e.  RR*  /\  b  e.  RR*  /\  ( a (,) b )  =/=  (/) )  -> inf ( ( a (,) b ) ,  RR* ,  <  )  =  a )
2817, 18, 21, 27syl3anc 1326 . . . . . . . . 9  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  -> inf ( ( a (,) b ) ,  RR* ,  <  )  =  a )
2916, 28eqtrd 2656 . . . . . . . 8  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  -> inf ( x ,  RR* ,  <  )  =  a )
3015supeq1d 8352 . . . . . . . . 9  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  ->  sup ( x ,  RR* ,  <  )  =  sup ( ( a (,) b ) ,  RR* ,  <  ) )
3122, 23, 24, 25, 26ixxub 12196 . . . . . . . . . 10  |-  ( ( a  e.  RR*  /\  b  e.  RR*  /\  ( a (,) b )  =/=  (/) )  ->  sup (
( a (,) b
) ,  RR* ,  <  )  =  b )
3217, 18, 21, 31syl3anc 1326 . . . . . . . . 9  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  ->  sup ( ( a (,) b ) ,  RR* ,  <  )  =  b )
3330, 32eqtrd 2656 . . . . . . . 8  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  ->  sup ( x ,  RR* ,  <  )  =  b )
3429, 33opeq12d 4410 . . . . . . 7  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  ->  <.inf ( x ,  RR* ,  <  ) ,  sup ( x ,  RR* ,  <  ) >.  =  <. a ,  b >. )
35 ioon0 12201 . . . . . . . . . . . 12  |-  ( ( a  e.  RR*  /\  b  e.  RR* )  ->  (
( a (,) b
)  =/=  (/)  <->  a  <  b ) )
3635ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  -> 
( ( a (,) b )  =/=  (/)  <->  a  <  b ) )
3721, 36mpbid 222 . . . . . . . . . 10  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  -> 
a  <  b )
38 xrltle 11982 . . . . . . . . . . 11  |-  ( ( a  e.  RR*  /\  b  e.  RR* )  ->  (
a  <  b  ->  a  <_  b ) )
3938ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  -> 
( a  <  b  ->  a  <_  b )
)
4037, 39mpd 15 . . . . . . . . 9  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  -> 
a  <_  b )
41 df-br 4654 . . . . . . . . 9  |-  ( a  <_  b  <->  <. a ,  b >.  e.  <_  )
4240, 41sylib 208 . . . . . . . 8  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  ->  <. a ,  b >.  e.  <_  )
43 opelxpi 5148 . . . . . . . . 9  |-  ( ( a  e.  RR*  /\  b  e.  RR* )  ->  <. a ,  b >.  e.  (
RR*  X.  RR* ) )
4443ad2antrr 762 . . . . . . . 8  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  ->  <. a ,  b >.  e.  ( RR*  X.  RR* )
)
4542, 44elind 3798 . . . . . . 7  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  ->  <. a ,  b >.  e.  (  <_  i^i  ( RR*  X.  RR* ) ) )
4634, 45eqeltrd 2701 . . . . . 6  |-  ( ( ( ( a  e. 
RR*  /\  b  e.  RR* )  /\  x  =  ( a (,) b
) )  /\  -.  x  =  (/) )  ->  <.inf ( x ,  RR* ,  <  ) ,  sup ( x ,  RR* ,  <  ) >.  e.  (  <_  i^i  ( RR*  X. 
RR* ) ) )
4714, 46ifclda 4120 . . . . 5  |-  ( ( ( a  e.  RR*  /\  b  e.  RR* )  /\  x  =  (
a (,) b ) )  ->  if (
x  =  (/) ,  <. 0 ,  0 >. , 
<.inf ( x ,  RR* ,  <  ) ,  sup ( x ,  RR* ,  <  ) >. )  e.  (  <_  i^i  ( RR*  X.  RR* ) ) )
4847ex 450 . . . 4  |-  ( ( a  e.  RR*  /\  b  e.  RR* )  ->  (
x  =  ( a (,) b )  ->  if ( x  =  (/) , 
<. 0 ,  0
>. ,  <.inf ( x ,  RR* ,  <  ) ,  sup ( x , 
RR* ,  <  ) >.
)  e.  (  <_  i^i  ( RR*  X.  RR* )
) ) )
4948rexlimivv 3036 . . 3  |-  ( E. a  e.  RR*  E. b  e.  RR*  x  =  ( a (,) b )  ->  if ( x  =  (/) ,  <. 0 ,  0 >. ,  <.inf ( x ,  RR* ,  <  ) ,  sup ( x ,  RR* ,  <  ) >. )  e.  (  <_  i^i  ( RR*  X.  RR* )
) )
505, 49sylbi 207 . 2  |-  ( x  e.  ran  (,)  ->  if ( x  =  (/) , 
<. 0 ,  0
>. ,  <.inf ( x ,  RR* ,  <  ) ,  sup ( x , 
RR* ,  <  ) >.
)  e.  (  <_  i^i  ( RR*  X.  RR* )
) )
511, 50fmpti 6383 1  |-  F : ran  (,) --> (  <_  i^i  ( RR*  X.  RR* )
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913    i^i cin 3573   (/)c0 3915   ifcif 4086   ~Pcpw 4158   <.cop 4183   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   ran crn 5115    Fn wfn 5883   -->wf 5884  (class class class)co 6650   supcsup 8346  infcinf 8347   RRcr 9935   0cc0 9936   RR*cxr 10073    < clt 10074    <_ cle 10075   (,)cioo 12175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-ioo 12179
This theorem is referenced by:  ioorcl  23345  uniioombllem2  23351
  Copyright terms: Public domain W3C validator