| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iscau | Structured version Visualization version Unicode version | ||
| Description: Express the property
" |
| Ref | Expression |
|---|---|
| iscau |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caufval 23073 |
. . 3
| |
| 2 | 1 | eleq2d 2687 |
. 2
|
| 3 | reseq1 5390 |
. . . . . 6
| |
| 4 | eqidd 2623 |
. . . . . 6
| |
| 5 | fveq1 6190 |
. . . . . . 7
| |
| 6 | 5 | oveq1d 6665 |
. . . . . 6
|
| 7 | 3, 4, 6 | feq123d 6034 |
. . . . 5
|
| 8 | 7 | rexbidv 3052 |
. . . 4
|
| 9 | 8 | ralbidv 2986 |
. . 3
|
| 10 | 9 | elrab 3363 |
. 2
|
| 11 | 2, 10 | syl6bb 276 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-map 7859 df-xr 10078 df-xmet 19739 df-cau 23054 |
| This theorem is referenced by: iscau2 23075 caufpm 23080 lmcau 23111 |
| Copyright terms: Public domain | W3C validator |