MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmcau Structured version   Visualization version   Unicode version

Theorem lmcau 23111
Description: Every convergent sequence in a metric space is a Cauchy sequence. Theorem 1.4-5 of [Kreyszig] p. 28. (Contributed by NM, 29-Jan-2008.) (Proof shortened by Mario Carneiro, 5-May-2014.)
Hypothesis
Ref Expression
lmcau.1  |-  J  =  ( MetOpen `  D )
Assertion
Ref Expression
lmcau  |-  ( D  e.  ( *Met `  X )  ->  dom  (
~~> t `  J ) 
C_  ( Cau `  D
) )

Proof of Theorem lmcau
Dummy variables  x  y  f  j  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmcau.1 . . . . 5  |-  J  =  ( MetOpen `  D )
21methaus 22325 . . . 4  |-  ( D  e.  ( *Met `  X )  ->  J  e.  Haus )
3 lmfun 21185 . . . 4  |-  ( J  e.  Haus  ->  Fun  ( ~~> t `  J )
)
4 funfvbrb 6330 . . . 4  |-  ( Fun  ( ~~> t `  J
)  ->  ( f  e.  dom  ( ~~> t `  J )  <->  f ( ~~> t `  J )
( ( ~~> t `  J ) `  f
) ) )
52, 3, 43syl 18 . . 3  |-  ( D  e.  ( *Met `  X )  ->  (
f  e.  dom  ( ~~> t `  J )  <->  f ( ~~> t `  J
) ( ( ~~> t `  J ) `  f
) ) )
6 id 22 . . . . . . . 8  |-  ( D  e.  ( *Met `  X )  ->  D  e.  ( *Met `  X ) )
71, 6lmmbr 23056 . . . . . . 7  |-  ( D  e.  ( *Met `  X )  ->  (
f ( ~~> t `  J ) ( ( ~~> t `  J ) `
 f )  <->  ( f  e.  ( X  ^pm  CC )  /\  ( ( ~~> t `  J ) `  f
)  e.  X  /\  A. y  e.  RR+  E. u  e.  ran  ZZ>= ( f  |`  u ) : u --> ( ( ( ~~> t `  J ) `  f
) ( ball `  D
) y ) ) ) )
87biimpa 501 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  f ( ~~> t `  J ) ( ( ~~> t `  J ) `
 f ) )  ->  ( f  e.  ( X  ^pm  CC )  /\  ( ( ~~> t `  J ) `  f
)  e.  X  /\  A. y  e.  RR+  E. u  e.  ran  ZZ>= ( f  |`  u ) : u --> ( ( ( ~~> t `  J ) `  f
) ( ball `  D
) y ) ) )
98simp1d 1073 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  f ( ~~> t `  J ) ( ( ~~> t `  J ) `
 f ) )  ->  f  e.  ( X  ^pm  CC )
)
10 simprr 796 . . . . . . . 8  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  f
( ~~> t `  J
) ( ( ~~> t `  J ) `  f
) )  /\  x  e.  RR+ )  /\  (
j  e.  ZZ  /\  ( f  |`  ( ZZ>=
`  j ) ) : ( ZZ>= `  j
) --> ( ( ( ~~> t `  J ) `
 f ) (
ball `  D )
( x  /  2
) ) ) )  ->  ( f  |`  ( ZZ>= `  j )
) : ( ZZ>= `  j ) --> ( ( ( ~~> t `  J
) `  f )
( ball `  D )
( x  /  2
) ) )
11 simplll 798 . . . . . . . . 9  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  f
( ~~> t `  J
) ( ( ~~> t `  J ) `  f
) )  /\  x  e.  RR+ )  /\  (
j  e.  ZZ  /\  ( f  |`  ( ZZ>=
`  j ) ) : ( ZZ>= `  j
) --> ( ( ( ~~> t `  J ) `
 f ) (
ball `  D )
( x  /  2
) ) ) )  ->  D  e.  ( *Met `  X
) )
128simp2d 1074 . . . . . . . . . 10  |-  ( ( D  e.  ( *Met `  X )  /\  f ( ~~> t `  J ) ( ( ~~> t `  J ) `
 f ) )  ->  ( ( ~~> t `  J ) `  f
)  e.  X )
1312ad2antrr 762 . . . . . . . . 9  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  f
( ~~> t `  J
) ( ( ~~> t `  J ) `  f
) )  /\  x  e.  RR+ )  /\  (
j  e.  ZZ  /\  ( f  |`  ( ZZ>=
`  j ) ) : ( ZZ>= `  j
) --> ( ( ( ~~> t `  J ) `
 f ) (
ball `  D )
( x  /  2
) ) ) )  ->  ( ( ~~> t `  J ) `  f
)  e.  X )
14 rpre 11839 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  x  e.  RR )
1514ad2antlr 763 . . . . . . . . 9  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  f
( ~~> t `  J
) ( ( ~~> t `  J ) `  f
) )  /\  x  e.  RR+ )  /\  (
j  e.  ZZ  /\  ( f  |`  ( ZZ>=
`  j ) ) : ( ZZ>= `  j
) --> ( ( ( ~~> t `  J ) `
 f ) (
ball `  D )
( x  /  2
) ) ) )  ->  x  e.  RR )
16 uzid 11702 . . . . . . . . . . . 12  |-  ( j  e.  ZZ  ->  j  e.  ( ZZ>= `  j )
)
1716ad2antrl 764 . . . . . . . . . . 11  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  f
( ~~> t `  J
) ( ( ~~> t `  J ) `  f
) )  /\  x  e.  RR+ )  /\  (
j  e.  ZZ  /\  ( f  |`  ( ZZ>=
`  j ) ) : ( ZZ>= `  j
) --> ( ( ( ~~> t `  J ) `
 f ) (
ball `  D )
( x  /  2
) ) ) )  ->  j  e.  (
ZZ>= `  j ) )
18 fvres 6207 . . . . . . . . . . 11  |-  ( j  e.  ( ZZ>= `  j
)  ->  ( (
f  |`  ( ZZ>= `  j
) ) `  j
)  =  ( f `
 j ) )
1917, 18syl 17 . . . . . . . . . 10  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  f
( ~~> t `  J
) ( ( ~~> t `  J ) `  f
) )  /\  x  e.  RR+ )  /\  (
j  e.  ZZ  /\  ( f  |`  ( ZZ>=
`  j ) ) : ( ZZ>= `  j
) --> ( ( ( ~~> t `  J ) `
 f ) (
ball `  D )
( x  /  2
) ) ) )  ->  ( ( f  |`  ( ZZ>= `  j )
) `  j )  =  ( f `  j ) )
2010, 17ffvelrnd 6360 . . . . . . . . . 10  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  f
( ~~> t `  J
) ( ( ~~> t `  J ) `  f
) )  /\  x  e.  RR+ )  /\  (
j  e.  ZZ  /\  ( f  |`  ( ZZ>=
`  j ) ) : ( ZZ>= `  j
) --> ( ( ( ~~> t `  J ) `
 f ) (
ball `  D )
( x  /  2
) ) ) )  ->  ( ( f  |`  ( ZZ>= `  j )
) `  j )  e.  ( ( ( ~~> t `  J ) `  f
) ( ball `  D
) ( x  / 
2 ) ) )
2119, 20eqeltrrd 2702 . . . . . . . . 9  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  f
( ~~> t `  J
) ( ( ~~> t `  J ) `  f
) )  /\  x  e.  RR+ )  /\  (
j  e.  ZZ  /\  ( f  |`  ( ZZ>=
`  j ) ) : ( ZZ>= `  j
) --> ( ( ( ~~> t `  J ) `
 f ) (
ball `  D )
( x  /  2
) ) ) )  ->  ( f `  j )  e.  ( ( ( ~~> t `  J ) `  f
) ( ball `  D
) ( x  / 
2 ) ) )
22 blhalf 22210 . . . . . . . . 9  |-  ( ( ( D  e.  ( *Met `  X
)  /\  ( ( ~~> t `  J ) `  f )  e.  X
)  /\  ( x  e.  RR  /\  ( f `
 j )  e.  ( ( ( ~~> t `  J ) `  f
) ( ball `  D
) ( x  / 
2 ) ) ) )  ->  ( (
( ~~> t `  J
) `  f )
( ball `  D )
( x  /  2
) )  C_  (
( f `  j
) ( ball `  D
) x ) )
2311, 13, 15, 21, 22syl22anc 1327 . . . . . . . 8  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  f
( ~~> t `  J
) ( ( ~~> t `  J ) `  f
) )  /\  x  e.  RR+ )  /\  (
j  e.  ZZ  /\  ( f  |`  ( ZZ>=
`  j ) ) : ( ZZ>= `  j
) --> ( ( ( ~~> t `  J ) `
 f ) (
ball `  D )
( x  /  2
) ) ) )  ->  ( ( ( ~~> t `  J ) `
 f ) (
ball `  D )
( x  /  2
) )  C_  (
( f `  j
) ( ball `  D
) x ) )
2410, 23fssd 6057 . . . . . . 7  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  f
( ~~> t `  J
) ( ( ~~> t `  J ) `  f
) )  /\  x  e.  RR+ )  /\  (
j  e.  ZZ  /\  ( f  |`  ( ZZ>=
`  j ) ) : ( ZZ>= `  j
) --> ( ( ( ~~> t `  J ) `
 f ) (
ball `  D )
( x  /  2
) ) ) )  ->  ( f  |`  ( ZZ>= `  j )
) : ( ZZ>= `  j ) --> ( ( f `  j ) ( ball `  D
) x ) )
25 rphalfcl 11858 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  ( x  /  2 )  e.  RR+ )
268simp3d 1075 . . . . . . . . . 10  |-  ( ( D  e.  ( *Met `  X )  /\  f ( ~~> t `  J ) ( ( ~~> t `  J ) `
 f ) )  ->  A. y  e.  RR+  E. u  e.  ran  ZZ>= ( f  |`  u ) : u --> ( ( ( ~~> t `  J
) `  f )
( ball `  D )
y ) )
27 oveq2 6658 . . . . . . . . . . . . 13  |-  ( y  =  ( x  / 
2 )  ->  (
( ( ~~> t `  J ) `  f
) ( ball `  D
) y )  =  ( ( ( ~~> t `  J ) `  f
) ( ball `  D
) ( x  / 
2 ) ) )
2827feq3d 6032 . . . . . . . . . . . 12  |-  ( y  =  ( x  / 
2 )  ->  (
( f  |`  u
) : u --> ( ( ( ~~> t `  J
) `  f )
( ball `  D )
y )  <->  ( f  |`  u ) : u --> ( ( ( ~~> t `  J ) `  f
) ( ball `  D
) ( x  / 
2 ) ) ) )
2928rexbidv 3052 . . . . . . . . . . 11  |-  ( y  =  ( x  / 
2 )  ->  ( E. u  e.  ran  ZZ>= ( f  |`  u
) : u --> ( ( ( ~~> t `  J
) `  f )
( ball `  D )
y )  <->  E. u  e.  ran  ZZ>= ( f  |`  u ) : u --> ( ( ( ~~> t `  J ) `  f
) ( ball `  D
) ( x  / 
2 ) ) ) )
3029rspcv 3305 . . . . . . . . . 10  |-  ( ( x  /  2 )  e.  RR+  ->  ( A. y  e.  RR+  E. u  e.  ran  ZZ>= ( f  |`  u ) : u --> ( ( ( ~~> t `  J ) `  f
) ( ball `  D
) y )  ->  E. u  e.  ran  ZZ>= ( f  |`  u
) : u --> ( ( ( ~~> t `  J
) `  f )
( ball `  D )
( x  /  2
) ) ) )
3125, 26, 30syl2im 40 . . . . . . . . 9  |-  ( x  e.  RR+  ->  ( ( D  e.  ( *Met `  X )  /\  f ( ~~> t `  J ) ( ( ~~> t `  J ) `
 f ) )  ->  E. u  e.  ran  ZZ>= ( f  |`  u
) : u --> ( ( ( ~~> t `  J
) `  f )
( ball `  D )
( x  /  2
) ) ) )
3231impcom 446 . . . . . . . 8  |-  ( ( ( D  e.  ( *Met `  X
)  /\  f ( ~~> t `  J )
( ( ~~> t `  J ) `  f
) )  /\  x  e.  RR+ )  ->  E. u  e.  ran  ZZ>= ( f  |`  u ) : u --> ( ( ( ~~> t `  J ) `  f
) ( ball `  D
) ( x  / 
2 ) ) )
33 uzf 11690 . . . . . . . . 9  |-  ZZ>= : ZZ --> ~P ZZ
34 ffn 6045 . . . . . . . . 9  |-  ( ZZ>= : ZZ --> ~P ZZ  ->  ZZ>=  Fn  ZZ )
35 reseq2 5391 . . . . . . . . . . 11  |-  ( u  =  ( ZZ>= `  j
)  ->  ( f  |`  u )  =  ( f  |`  ( ZZ>= `  j ) ) )
36 id 22 . . . . . . . . . . 11  |-  ( u  =  ( ZZ>= `  j
)  ->  u  =  ( ZZ>= `  j )
)
3735, 36feq12d 6033 . . . . . . . . . 10  |-  ( u  =  ( ZZ>= `  j
)  ->  ( (
f  |`  u ) : u --> ( ( ( ~~> t `  J ) `
 f ) (
ball `  D )
( x  /  2
) )  <->  ( f  |`  ( ZZ>= `  j )
) : ( ZZ>= `  j ) --> ( ( ( ~~> t `  J
) `  f )
( ball `  D )
( x  /  2
) ) ) )
3837rexrn 6361 . . . . . . . . 9  |-  ( ZZ>=  Fn  ZZ  ->  ( E. u  e.  ran  ZZ>= ( f  |`  u ) : u --> ( ( ( ~~> t `  J ) `  f
) ( ball `  D
) ( x  / 
2 ) )  <->  E. j  e.  ZZ  ( f  |`  ( ZZ>= `  j )
) : ( ZZ>= `  j ) --> ( ( ( ~~> t `  J
) `  f )
( ball `  D )
( x  /  2
) ) ) )
3933, 34, 38mp2b 10 . . . . . . . 8  |-  ( E. u  e.  ran  ZZ>= ( f  |`  u ) : u --> ( ( ( ~~> t `  J
) `  f )
( ball `  D )
( x  /  2
) )  <->  E. j  e.  ZZ  ( f  |`  ( ZZ>= `  j )
) : ( ZZ>= `  j ) --> ( ( ( ~~> t `  J
) `  f )
( ball `  D )
( x  /  2
) ) )
4032, 39sylib 208 . . . . . . 7  |-  ( ( ( D  e.  ( *Met `  X
)  /\  f ( ~~> t `  J )
( ( ~~> t `  J ) `  f
) )  /\  x  e.  RR+ )  ->  E. j  e.  ZZ  ( f  |`  ( ZZ>= `  j )
) : ( ZZ>= `  j ) --> ( ( ( ~~> t `  J
) `  f )
( ball `  D )
( x  /  2
) ) )
4124, 40reximddv 3018 . . . . . 6  |-  ( ( ( D  e.  ( *Met `  X
)  /\  f ( ~~> t `  J )
( ( ~~> t `  J ) `  f
) )  /\  x  e.  RR+ )  ->  E. j  e.  ZZ  ( f  |`  ( ZZ>= `  j )
) : ( ZZ>= `  j ) --> ( ( f `  j ) ( ball `  D
) x ) )
4241ralrimiva 2966 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  f ( ~~> t `  J ) ( ( ~~> t `  J ) `
 f ) )  ->  A. x  e.  RR+  E. j  e.  ZZ  (
f  |`  ( ZZ>= `  j
) ) : (
ZZ>= `  j ) --> ( ( f `  j
) ( ball `  D
) x ) )
43 iscau 23074 . . . . . 6  |-  ( D  e.  ( *Met `  X )  ->  (
f  e.  ( Cau `  D )  <->  ( f  e.  ( X  ^pm  CC )  /\  A. x  e.  RR+  E. j  e.  ZZ  ( f  |`  ( ZZ>=
`  j ) ) : ( ZZ>= `  j
) --> ( ( f `
 j ) (
ball `  D )
x ) ) ) )
4443adantr 481 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  f ( ~~> t `  J ) ( ( ~~> t `  J ) `
 f ) )  ->  ( f  e.  ( Cau `  D
)  <->  ( f  e.  ( X  ^pm  CC )  /\  A. x  e.  RR+  E. j  e.  ZZ  ( f  |`  ( ZZ>=
`  j ) ) : ( ZZ>= `  j
) --> ( ( f `
 j ) (
ball `  D )
x ) ) ) )
459, 42, 44mpbir2and 957 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  f ( ~~> t `  J ) ( ( ~~> t `  J ) `
 f ) )  ->  f  e.  ( Cau `  D ) )
4645ex 450 . . 3  |-  ( D  e.  ( *Met `  X )  ->  (
f ( ~~> t `  J ) ( ( ~~> t `  J ) `
 f )  -> 
f  e.  ( Cau `  D ) ) )
475, 46sylbid 230 . 2  |-  ( D  e.  ( *Met `  X )  ->  (
f  e.  dom  ( ~~> t `  J )  ->  f  e.  ( Cau `  D ) ) )
4847ssrdv 3609 1  |-  ( D  e.  ( *Met `  X )  ->  dom  (
~~> t `  J ) 
C_  ( Cau `  D
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913    C_ wss 3574   ~Pcpw 4158   class class class wbr 4653   dom cdm 5114   ran crn 5115    |` cres 5116   Fun wfun 5882    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^pm cpm 7858   CCcc 9934   RRcr 9935    / cdiv 10684   2c2 11070   ZZcz 11377   ZZ>=cuz 11687   RR+crp 11832   *Metcxmt 19731   ballcbl 19733   MetOpencmopn 19736   ~~> tclm 21030   Hauscha 21112   Caucca 23051
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-icc 12182  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-bases 20750  df-lm 21033  df-haus 21119  df-cau 23054
This theorem is referenced by:  hlimcaui  28093
  Copyright terms: Public domain W3C validator