MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscau2 Structured version   Visualization version   Unicode version

Theorem iscau2 23075
Description: Express the property " F is a Cauchy sequence of metric  D," using an arbitrary upper set of integers. (Contributed by NM, 19-Dec-2006.) (Revised by Mario Carneiro, 14-Nov-2013.)
Assertion
Ref Expression
iscau2  |-  ( D  e.  ( *Met `  X )  ->  ( F  e.  ( Cau `  D )  <->  ( F  e.  ( X  ^pm  CC )  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D ( F `
 j ) )  <  x ) ) ) )
Distinct variable groups:    j, k, x, D    j, F, k, x    j, X, k, x

Proof of Theorem iscau2
StepHypRef Expression
1 iscau 23074 . 2  |-  ( D  e.  ( *Met `  X )  ->  ( F  e.  ( Cau `  D )  <->  ( F  e.  ( X  ^pm  CC )  /\  A. x  e.  RR+  E. j  e.  ZZ  ( F  |`  ( ZZ>= `  j ) ) : ( ZZ>= `  j ) --> ( ( F `  j ) ( ball `  D ) x ) ) ) )
2 elfvdm 6220 . . . . . . . . . 10  |-  ( D  e.  ( *Met `  X )  ->  X  e.  dom  *Met )
3 cnex 10017 . . . . . . . . . 10  |-  CC  e.  _V
4 elpmg 7873 . . . . . . . . . 10  |-  ( ( X  e.  dom  *Met  /\  CC  e.  _V )  ->  ( F  e.  ( X  ^pm  CC ) 
<->  ( Fun  F  /\  F  C_  ( CC  X.  X ) ) ) )
52, 3, 4sylancl 694 . . . . . . . . 9  |-  ( D  e.  ( *Met `  X )  ->  ( F  e.  ( X  ^pm  CC )  <->  ( Fun  F  /\  F  C_  ( CC  X.  X ) ) ) )
65simprbda 653 . . . . . . . 8  |-  ( ( D  e.  ( *Met `  X )  /\  F  e.  ( X  ^pm  CC )
)  ->  Fun  F )
7 ffvresb 6394 . . . . . . . 8  |-  ( Fun 
F  ->  ( ( F  |`  ( ZZ>= `  j
) ) : (
ZZ>= `  j ) --> ( ( F `  j
) ( ball `  D
) x )  <->  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  ( ( F `  j
) ( ball `  D
) x ) ) ) )
86, 7syl 17 . . . . . . 7  |-  ( ( D  e.  ( *Met `  X )  /\  F  e.  ( X  ^pm  CC )
)  ->  ( ( F  |`  ( ZZ>= `  j
) ) : (
ZZ>= `  j ) --> ( ( F `  j
) ( ball `  D
) x )  <->  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  ( ( F `  j
) ( ball `  D
) x ) ) ) )
98rexbidv 3052 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  F  e.  ( X  ^pm  CC )
)  ->  ( E. j  e.  ZZ  ( F  |`  ( ZZ>= `  j
) ) : (
ZZ>= `  j ) --> ( ( F `  j
) ( ball `  D
) x )  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  ( ( F `  j
) ( ball `  D
) x ) ) ) )
109adantr 481 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  F  e.  ( X  ^pm  CC ) )  /\  x  e.  RR+ )  ->  ( E. j  e.  ZZ  ( F  |`  ( ZZ>= `  j
) ) : (
ZZ>= `  j ) --> ( ( F `  j
) ( ball `  D
) x )  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  ( ( F `  j
) ( ball `  D
) x ) ) ) )
11 uzid 11702 . . . . . . . . . . 11  |-  ( j  e.  ZZ  ->  j  e.  ( ZZ>= `  j )
)
1211adantl 482 . . . . . . . . . 10  |-  ( ( ( D  e.  ( *Met `  X
)  /\  x  e.  RR+ )  /\  j  e.  ZZ )  ->  j  e.  ( ZZ>= `  j )
)
13 eleq1 2689 . . . . . . . . . . . 12  |-  ( k  =  j  ->  (
k  e.  dom  F  <->  j  e.  dom  F ) )
14 fveq2 6191 . . . . . . . . . . . . 13  |-  ( k  =  j  ->  ( F `  k )  =  ( F `  j ) )
1514eleq1d 2686 . . . . . . . . . . . 12  |-  ( k  =  j  ->  (
( F `  k
)  e.  ( ( F `  j ) ( ball `  D
) x )  <->  ( F `  j )  e.  ( ( F `  j
) ( ball `  D
) x ) ) )
1613, 15anbi12d 747 . . . . . . . . . . 11  |-  ( k  =  j  ->  (
( k  e.  dom  F  /\  ( F `  k )  e.  ( ( F `  j
) ( ball `  D
) x ) )  <-> 
( j  e.  dom  F  /\  ( F `  j )  e.  ( ( F `  j
) ( ball `  D
) x ) ) ) )
1716rspcv 3305 . . . . . . . . . 10  |-  ( j  e.  ( ZZ>= `  j
)  ->  ( A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  ( ( F `
 j ) (
ball `  D )
x ) )  -> 
( j  e.  dom  F  /\  ( F `  j )  e.  ( ( F `  j
) ( ball `  D
) x ) ) ) )
1812, 17syl 17 . . . . . . . . 9  |-  ( ( ( D  e.  ( *Met `  X
)  /\  x  e.  RR+ )  /\  j  e.  ZZ )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  ( ( F `  j ) ( ball `  D
) x ) )  ->  ( j  e. 
dom  F  /\  ( F `  j )  e.  ( ( F `  j ) ( ball `  D ) x ) ) ) )
19 n0i 3920 . . . . . . . . . . . 12  |-  ( ( F `  j )  e.  ( ( F `
 j ) (
ball `  D )
x )  ->  -.  ( ( F `  j ) ( ball `  D ) x )  =  (/) )
20 blf 22212 . . . . . . . . . . . . . . 15  |-  ( D  e.  ( *Met `  X )  ->  ( ball `  D ) : ( X  X.  RR* )
--> ~P X )
21 fdm 6051 . . . . . . . . . . . . . . 15  |-  ( (
ball `  D ) : ( X  X.  RR* ) --> ~P X  ->  dom  ( ball `  D
)  =  ( X  X.  RR* ) )
2220, 21syl 17 . . . . . . . . . . . . . 14  |-  ( D  e.  ( *Met `  X )  ->  dom  ( ball `  D )  =  ( X  X.  RR* ) )
23 ndmovg 6817 . . . . . . . . . . . . . . 15  |-  ( ( dom  ( ball `  D
)  =  ( X  X.  RR* )  /\  -.  ( ( F `  j )  e.  X  /\  x  e.  RR* )
)  ->  ( ( F `  j )
( ball `  D )
x )  =  (/) )
2423ex 450 . . . . . . . . . . . . . 14  |-  ( dom  ( ball `  D
)  =  ( X  X.  RR* )  ->  ( -.  ( ( F `  j )  e.  X  /\  x  e.  RR* )  ->  ( ( F `  j ) ( ball `  D ) x )  =  (/) ) )
2522, 24syl 17 . . . . . . . . . . . . 13  |-  ( D  e.  ( *Met `  X )  ->  ( -.  ( ( F `  j )  e.  X  /\  x  e.  RR* )  ->  ( ( F `  j ) ( ball `  D ) x )  =  (/) ) )
2625con1d 139 . . . . . . . . . . . 12  |-  ( D  e.  ( *Met `  X )  ->  ( -.  ( ( F `  j ) ( ball `  D ) x )  =  (/)  ->  ( ( F `  j )  e.  X  /\  x  e.  RR* ) ) )
27 simpl 473 . . . . . . . . . . . 12  |-  ( ( ( F `  j
)  e.  X  /\  x  e.  RR* )  -> 
( F `  j
)  e.  X )
2819, 26, 27syl56 36 . . . . . . . . . . 11  |-  ( D  e.  ( *Met `  X )  ->  (
( F `  j
)  e.  ( ( F `  j ) ( ball `  D
) x )  -> 
( F `  j
)  e.  X ) )
2928adantld 483 . . . . . . . . . 10  |-  ( D  e.  ( *Met `  X )  ->  (
( j  e.  dom  F  /\  ( F `  j )  e.  ( ( F `  j
) ( ball `  D
) x ) )  ->  ( F `  j )  e.  X
) )
3029ad2antrr 762 . . . . . . . . 9  |-  ( ( ( D  e.  ( *Met `  X
)  /\  x  e.  RR+ )  /\  j  e.  ZZ )  ->  (
( j  e.  dom  F  /\  ( F `  j )  e.  ( ( F `  j
) ( ball `  D
) x ) )  ->  ( F `  j )  e.  X
) )
3118, 30syld 47 . . . . . . . 8  |-  ( ( ( D  e.  ( *Met `  X
)  /\  x  e.  RR+ )  /\  j  e.  ZZ )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  ( ( F `  j ) ( ball `  D
) x ) )  ->  ( F `  j )  e.  X
) )
3214eleq1d 2686 . . . . . . . . . . . 12  |-  ( k  =  j  ->  (
( F `  k
)  e.  X  <->  ( F `  j )  e.  X
) )
3314oveq1d 6665 . . . . . . . . . . . . 13  |-  ( k  =  j  ->  (
( F `  k
) D ( F `
 j ) )  =  ( ( F `
 j ) D ( F `  j
) ) )
3433breq1d 4663 . . . . . . . . . . . 12  |-  ( k  =  j  ->  (
( ( F `  k ) D ( F `  j ) )  <  x  <->  ( ( F `  j ) D ( F `  j ) )  < 
x ) )
3513, 32, 343anbi123d 1399 . . . . . . . . . . 11  |-  ( k  =  j  ->  (
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D ( F `  j ) )  <  x )  <-> 
( j  e.  dom  F  /\  ( F `  j )  e.  X  /\  ( ( F `  j ) D ( F `  j ) )  <  x ) ) )
3635rspcv 3305 . . . . . . . . . 10  |-  ( j  e.  ( ZZ>= `  j
)  ->  ( A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D ( F `
 j ) )  <  x )  -> 
( j  e.  dom  F  /\  ( F `  j )  e.  X  /\  ( ( F `  j ) D ( F `  j ) )  <  x ) ) )
3712, 36syl 17 . . . . . . . . 9  |-  ( ( ( D  e.  ( *Met `  X
)  /\  x  e.  RR+ )  /\  j  e.  ZZ )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  X  /\  ( ( F `  k ) D ( F `  j ) )  <  x )  ->  ( j  e. 
dom  F  /\  ( F `  j )  e.  X  /\  (
( F `  j
) D ( F `
 j ) )  <  x ) ) )
38 simp2 1062 . . . . . . . . 9  |-  ( ( j  e.  dom  F  /\  ( F `  j
)  e.  X  /\  ( ( F `  j ) D ( F `  j ) )  <  x )  ->  ( F `  j )  e.  X
)
3937, 38syl6 35 . . . . . . . 8  |-  ( ( ( D  e.  ( *Met `  X
)  /\  x  e.  RR+ )  /\  j  e.  ZZ )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  X  /\  ( ( F `  k ) D ( F `  j ) )  <  x )  ->  ( F `  j )  e.  X
) )
40 rpxr 11840 . . . . . . . . . . . . . . . 16  |-  ( x  e.  RR+  ->  x  e. 
RR* )
41 elbl 22193 . . . . . . . . . . . . . . . 16  |-  ( ( D  e.  ( *Met `  X )  /\  ( F `  j )  e.  X  /\  x  e.  RR* )  ->  ( ( F `  k )  e.  ( ( F `  j
) ( ball `  D
) x )  <->  ( ( F `  k )  e.  X  /\  (
( F `  j
) D ( F `
 k ) )  <  x ) ) )
4240, 41syl3an3 1361 . . . . . . . . . . . . . . 15  |-  ( ( D  e.  ( *Met `  X )  /\  ( F `  j )  e.  X  /\  x  e.  RR+ )  ->  ( ( F `  k )  e.  ( ( F `  j
) ( ball `  D
) x )  <->  ( ( F `  k )  e.  X  /\  (
( F `  j
) D ( F `
 k ) )  <  x ) ) )
43 xmetsym 22152 . . . . . . . . . . . . . . . . . . 19  |-  ( ( D  e.  ( *Met `  X )  /\  ( F `  j )  e.  X  /\  ( F `  k
)  e.  X )  ->  ( ( F `
 j ) D ( F `  k
) )  =  ( ( F `  k
) D ( F `
 j ) ) )
44433expa 1265 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( D  e.  ( *Met `  X
)  /\  ( F `  j )  e.  X
)  /\  ( F `  k )  e.  X
)  ->  ( ( F `  j ) D ( F `  k ) )  =  ( ( F `  k ) D ( F `  j ) ) )
45443adantl3 1219 . . . . . . . . . . . . . . . . 17  |-  ( ( ( D  e.  ( *Met `  X
)  /\  ( F `  j )  e.  X  /\  x  e.  RR+ )  /\  ( F `  k
)  e.  X )  ->  ( ( F `
 j ) D ( F `  k
) )  =  ( ( F `  k
) D ( F `
 j ) ) )
4645breq1d 4663 . . . . . . . . . . . . . . . 16  |-  ( ( ( D  e.  ( *Met `  X
)  /\  ( F `  j )  e.  X  /\  x  e.  RR+ )  /\  ( F `  k
)  e.  X )  ->  ( ( ( F `  j ) D ( F `  k ) )  < 
x  <->  ( ( F `
 k ) D ( F `  j
) )  <  x
) )
4746pm5.32da 673 . . . . . . . . . . . . . . 15  |-  ( ( D  e.  ( *Met `  X )  /\  ( F `  j )  e.  X  /\  x  e.  RR+ )  ->  ( ( ( F `
 k )  e.  X  /\  ( ( F `  j ) D ( F `  k ) )  < 
x )  <->  ( ( F `  k )  e.  X  /\  (
( F `  k
) D ( F `
 j ) )  <  x ) ) )
4842, 47bitrd 268 . . . . . . . . . . . . . 14  |-  ( ( D  e.  ( *Met `  X )  /\  ( F `  j )  e.  X  /\  x  e.  RR+ )  ->  ( ( F `  k )  e.  ( ( F `  j
) ( ball `  D
) x )  <->  ( ( F `  k )  e.  X  /\  (
( F `  k
) D ( F `
 j ) )  <  x ) ) )
49483com23 1271 . . . . . . . . . . . . 13  |-  ( ( D  e.  ( *Met `  X )  /\  x  e.  RR+  /\  ( F `  j
)  e.  X )  ->  ( ( F `
 k )  e.  ( ( F `  j ) ( ball `  D ) x )  <-> 
( ( F `  k )  e.  X  /\  ( ( F `  k ) D ( F `  j ) )  <  x ) ) )
5049anbi2d 740 . . . . . . . . . . . 12  |-  ( ( D  e.  ( *Met `  X )  /\  x  e.  RR+  /\  ( F `  j
)  e.  X )  ->  ( ( k  e.  dom  F  /\  ( F `  k )  e.  ( ( F `
 j ) (
ball `  D )
x ) )  <->  ( k  e.  dom  F  /\  (
( F `  k
)  e.  X  /\  ( ( F `  k ) D ( F `  j ) )  <  x ) ) ) )
51 3anass 1042 . . . . . . . . . . . 12  |-  ( ( k  e.  dom  F  /\  ( F `  k
)  e.  X  /\  ( ( F `  k ) D ( F `  j ) )  <  x )  <-> 
( k  e.  dom  F  /\  ( ( F `
 k )  e.  X  /\  ( ( F `  k ) D ( F `  j ) )  < 
x ) ) )
5250, 51syl6bbr 278 . . . . . . . . . . 11  |-  ( ( D  e.  ( *Met `  X )  /\  x  e.  RR+  /\  ( F `  j
)  e.  X )  ->  ( ( k  e.  dom  F  /\  ( F `  k )  e.  ( ( F `
 j ) (
ball `  D )
x ) )  <->  ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D ( F `
 j ) )  <  x ) ) )
5352ralbidv 2986 . . . . . . . . . 10  |-  ( ( D  e.  ( *Met `  X )  /\  x  e.  RR+  /\  ( F `  j
)  e.  X )  ->  ( A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  ( ( F `  j
) ( ball `  D
) x ) )  <->  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  X  /\  ( ( F `  k ) D ( F `  j ) )  <  x ) ) )
54533expia 1267 . . . . . . . . 9  |-  ( ( D  e.  ( *Met `  X )  /\  x  e.  RR+ )  ->  ( ( F `
 j )  e.  X  ->  ( A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  ( ( F `
 j ) (
ball `  D )
x ) )  <->  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D ( F `  j ) )  <  x ) ) ) )
5554adantr 481 . . . . . . . 8  |-  ( ( ( D  e.  ( *Met `  X
)  /\  x  e.  RR+ )  /\  j  e.  ZZ )  ->  (
( F `  j
)  e.  X  -> 
( A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  ( ( F `  j
) ( ball `  D
) x ) )  <->  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  X  /\  ( ( F `  k ) D ( F `  j ) )  <  x ) ) ) )
5631, 39, 55pm5.21ndd 369 . . . . . . 7  |-  ( ( ( D  e.  ( *Met `  X
)  /\  x  e.  RR+ )  /\  j  e.  ZZ )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  ( ( F `  j ) ( ball `  D
) x ) )  <->  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  X  /\  ( ( F `  k ) D ( F `  j ) )  <  x ) ) )
5756rexbidva 3049 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  x  e.  RR+ )  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  ( ( F `  j
) ( ball `  D
) x ) )  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D ( F `
 j ) )  <  x ) ) )
5857adantlr 751 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  F  e.  ( X  ^pm  CC ) )  /\  x  e.  RR+ )  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  ( ( F `
 j ) (
ball `  D )
x ) )  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D ( F `  j ) )  <  x ) ) )
5910, 58bitrd 268 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  F  e.  ( X  ^pm  CC ) )  /\  x  e.  RR+ )  ->  ( E. j  e.  ZZ  ( F  |`  ( ZZ>= `  j
) ) : (
ZZ>= `  j ) --> ( ( F `  j
) ( ball `  D
) x )  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D ( F `  j ) )  <  x ) ) )
6059ralbidva 2985 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  F  e.  ( X  ^pm  CC )
)  ->  ( A. x  e.  RR+  E. j  e.  ZZ  ( F  |`  ( ZZ>= `  j )
) : ( ZZ>= `  j ) --> ( ( F `  j ) ( ball `  D
) x )  <->  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D ( F `  j ) )  <  x ) ) )
6160pm5.32da 673 . 2  |-  ( D  e.  ( *Met `  X )  ->  (
( F  e.  ( X  ^pm  CC )  /\  A. x  e.  RR+  E. j  e.  ZZ  ( F  |`  ( ZZ>= `  j
) ) : (
ZZ>= `  j ) --> ( ( F `  j
) ( ball `  D
) x ) )  <-> 
( F  e.  ( X  ^pm  CC )  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D ( F `
 j ) )  <  x ) ) ) )
621, 61bitrd 268 1  |-  ( D  e.  ( *Met `  X )  ->  ( F  e.  ( Cau `  D )  <->  ( F  e.  ( X  ^pm  CC )  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D ( F `
 j ) )  <  x ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   class class class wbr 4653    X. cxp 5112   dom cdm 5114    |` cres 5116   Fun wfun 5882   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^pm cpm 7858   CCcc 9934   RR*cxr 10073    < clt 10074   ZZcz 11377   ZZ>=cuz 11687   RR+crp 11832   *Metcxmt 19731   ballcbl 19733   Caucca 23051
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-neg 10269  df-z 11378  df-uz 11688  df-rp 11833  df-xadd 11947  df-psmet 19738  df-xmet 19739  df-bl 19741  df-cau 23054
This theorem is referenced by:  iscau3  23076  iscau4  23077  caun0  23079  caussi  23095
  Copyright terms: Public domain W3C validator