MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vitalilem1 Structured version   Visualization version   Unicode version

Theorem vitalilem1 23376
Description: Lemma for vitali 23382. (Contributed by Mario Carneiro, 16-Jun-2014.) (Proof shortened by AV, 1-May-2021.)
Hypothesis
Ref Expression
vitali.1  |-  .~  =  { <. x ,  y
>.  |  ( (
x  e.  ( 0 [,] 1 )  /\  y  e.  ( 0 [,] 1 ) )  /\  ( x  -  y )  e.  QQ ) }
Assertion
Ref Expression
vitalilem1  |-  .~  Er  ( 0 [,] 1
)
Distinct variable group:    x, y, 
.~

Proof of Theorem vitalilem1
Dummy variables  v  w  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vitali.1 . . 3  |-  .~  =  { <. x ,  y
>.  |  ( (
x  e.  ( 0 [,] 1 )  /\  y  e.  ( 0 [,] 1 ) )  /\  ( x  -  y )  e.  QQ ) }
21relopabi 5245 . 2  |-  Rel  .~
3 simplr 792 . . . 4  |-  ( ( ( u  e.  ( 0 [,] 1 )  /\  v  e.  ( 0 [,] 1 ) )  /\  ( u  -  v )  e.  QQ )  ->  v  e.  ( 0 [,] 1
) )
4 simpll 790 . . . 4  |-  ( ( ( u  e.  ( 0 [,] 1 )  /\  v  e.  ( 0 [,] 1 ) )  /\  ( u  -  v )  e.  QQ )  ->  u  e.  ( 0 [,] 1
) )
5 unitssre 12319 . . . . . . . . 9  |-  ( 0 [,] 1 )  C_  RR
65sseli 3599 . . . . . . . 8  |-  ( u  e.  ( 0 [,] 1 )  ->  u  e.  RR )
76recnd 10068 . . . . . . 7  |-  ( u  e.  ( 0 [,] 1 )  ->  u  e.  CC )
87ad2antrr 762 . . . . . 6  |-  ( ( ( u  e.  ( 0 [,] 1 )  /\  v  e.  ( 0 [,] 1 ) )  /\  ( u  -  v )  e.  QQ )  ->  u  e.  CC )
95sseli 3599 . . . . . . . 8  |-  ( v  e.  ( 0 [,] 1 )  ->  v  e.  RR )
109recnd 10068 . . . . . . 7  |-  ( v  e.  ( 0 [,] 1 )  ->  v  e.  CC )
1110ad2antlr 763 . . . . . 6  |-  ( ( ( u  e.  ( 0 [,] 1 )  /\  v  e.  ( 0 [,] 1 ) )  /\  ( u  -  v )  e.  QQ )  ->  v  e.  CC )
128, 11negsubdi2d 10408 . . . . 5  |-  ( ( ( u  e.  ( 0 [,] 1 )  /\  v  e.  ( 0 [,] 1 ) )  /\  ( u  -  v )  e.  QQ )  ->  -u (
u  -  v )  =  ( v  -  u ) )
13 qnegcl 11805 . . . . . 6  |-  ( ( u  -  v )  e.  QQ  ->  -u (
u  -  v )  e.  QQ )
1413adantl 482 . . . . 5  |-  ( ( ( u  e.  ( 0 [,] 1 )  /\  v  e.  ( 0 [,] 1 ) )  /\  ( u  -  v )  e.  QQ )  ->  -u (
u  -  v )  e.  QQ )
1512, 14eqeltrrd 2702 . . . 4  |-  ( ( ( u  e.  ( 0 [,] 1 )  /\  v  e.  ( 0 [,] 1 ) )  /\  ( u  -  v )  e.  QQ )  ->  (
v  -  u )  e.  QQ )
163, 4, 15jca31 557 . . 3  |-  ( ( ( u  e.  ( 0 [,] 1 )  /\  v  e.  ( 0 [,] 1 ) )  /\  ( u  -  v )  e.  QQ )  ->  (
( v  e.  ( 0 [,] 1 )  /\  u  e.  ( 0 [,] 1 ) )  /\  ( v  -  u )  e.  QQ ) )
17 oveq12 6659 . . . . 5  |-  ( ( x  =  u  /\  y  =  v )  ->  ( x  -  y
)  =  ( u  -  v ) )
1817eleq1d 2686 . . . 4  |-  ( ( x  =  u  /\  y  =  v )  ->  ( ( x  -  y )  e.  QQ  <->  ( u  -  v )  e.  QQ ) )
1918, 1brab2a 5194 . . 3  |-  ( u  .~  v  <->  ( (
u  e.  ( 0 [,] 1 )  /\  v  e.  ( 0 [,] 1 ) )  /\  ( u  -  v )  e.  QQ ) )
20 oveq12 6659 . . . . 5  |-  ( ( x  =  v  /\  y  =  u )  ->  ( x  -  y
)  =  ( v  -  u ) )
2120eleq1d 2686 . . . 4  |-  ( ( x  =  v  /\  y  =  u )  ->  ( ( x  -  y )  e.  QQ  <->  ( v  -  u )  e.  QQ ) )
2221, 1brab2a 5194 . . 3  |-  ( v  .~  u  <->  ( (
v  e.  ( 0 [,] 1 )  /\  u  e.  ( 0 [,] 1 ) )  /\  ( v  -  u )  e.  QQ ) )
2316, 19, 223imtr4i 281 . 2  |-  ( u  .~  v  ->  v  .~  u )
24 simpl 473 . . . . . . 7  |-  ( ( u  .~  v  /\  v  .~  w )  ->  u  .~  v )
2524, 19sylib 208 . . . . . 6  |-  ( ( u  .~  v  /\  v  .~  w )  -> 
( ( u  e.  ( 0 [,] 1
)  /\  v  e.  ( 0 [,] 1
) )  /\  (
u  -  v )  e.  QQ ) )
2625simpld 475 . . . . 5  |-  ( ( u  .~  v  /\  v  .~  w )  -> 
( u  e.  ( 0 [,] 1 )  /\  v  e.  ( 0 [,] 1 ) ) )
2726simpld 475 . . . 4  |-  ( ( u  .~  v  /\  v  .~  w )  ->  u  e.  ( 0 [,] 1 ) )
28 simpr 477 . . . . . . 7  |-  ( ( u  .~  v  /\  v  .~  w )  -> 
v  .~  w )
29 oveq12 6659 . . . . . . . . 9  |-  ( ( x  =  v  /\  y  =  w )  ->  ( x  -  y
)  =  ( v  -  w ) )
3029eleq1d 2686 . . . . . . . 8  |-  ( ( x  =  v  /\  y  =  w )  ->  ( ( x  -  y )  e.  QQ  <->  ( v  -  w )  e.  QQ ) )
3130, 1brab2a 5194 . . . . . . 7  |-  ( v  .~  w  <->  ( (
v  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 ) )  /\  ( v  -  w )  e.  QQ ) )
3228, 31sylib 208 . . . . . 6  |-  ( ( u  .~  v  /\  v  .~  w )  -> 
( ( v  e.  ( 0 [,] 1
)  /\  w  e.  ( 0 [,] 1
) )  /\  (
v  -  w )  e.  QQ ) )
3332simpld 475 . . . . 5  |-  ( ( u  .~  v  /\  v  .~  w )  -> 
( v  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 ) ) )
3433simprd 479 . . . 4  |-  ( ( u  .~  v  /\  v  .~  w )  ->  w  e.  ( 0 [,] 1 ) )
3527, 34jca 554 . . 3  |-  ( ( u  .~  v  /\  v  .~  w )  -> 
( u  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 ) ) )
3627, 7syl 17 . . . . 5  |-  ( ( u  .~  v  /\  v  .~  w )  ->  u  e.  CC )
3725, 11syl 17 . . . . 5  |-  ( ( u  .~  v  /\  v  .~  w )  -> 
v  e.  CC )
385, 34sseldi 3601 . . . . . 6  |-  ( ( u  .~  v  /\  v  .~  w )  ->  w  e.  RR )
3938recnd 10068 . . . . 5  |-  ( ( u  .~  v  /\  v  .~  w )  ->  w  e.  CC )
4036, 37, 39npncand 10416 . . . 4  |-  ( ( u  .~  v  /\  v  .~  w )  -> 
( ( u  -  v )  +  ( v  -  w ) )  =  ( u  -  w ) )
4125simprd 479 . . . . 5  |-  ( ( u  .~  v  /\  v  .~  w )  -> 
( u  -  v
)  e.  QQ )
4232simprd 479 . . . . 5  |-  ( ( u  .~  v  /\  v  .~  w )  -> 
( v  -  w
)  e.  QQ )
43 qaddcl 11804 . . . . 5  |-  ( ( ( u  -  v
)  e.  QQ  /\  ( v  -  w
)  e.  QQ )  ->  ( ( u  -  v )  +  ( v  -  w
) )  e.  QQ )
4441, 42, 43syl2anc 693 . . . 4  |-  ( ( u  .~  v  /\  v  .~  w )  -> 
( ( u  -  v )  +  ( v  -  w ) )  e.  QQ )
4540, 44eqeltrrd 2702 . . 3  |-  ( ( u  .~  v  /\  v  .~  w )  -> 
( u  -  w
)  e.  QQ )
46 oveq12 6659 . . . . 5  |-  ( ( x  =  u  /\  y  =  w )  ->  ( x  -  y
)  =  ( u  -  w ) )
4746eleq1d 2686 . . . 4  |-  ( ( x  =  u  /\  y  =  w )  ->  ( ( x  -  y )  e.  QQ  <->  ( u  -  w )  e.  QQ ) )
4847, 1brab2a 5194 . . 3  |-  ( u  .~  w  <->  ( (
u  e.  ( 0 [,] 1 )  /\  w  e.  ( 0 [,] 1 ) )  /\  ( u  -  w )  e.  QQ ) )
4935, 45, 48sylanbrc 698 . 2  |-  ( ( u  .~  v  /\  v  .~  w )  ->  u  .~  w )
507subidd 10380 . . . . . 6  |-  ( u  e.  ( 0 [,] 1 )  ->  (
u  -  u )  =  0 )
51 0z 11388 . . . . . . 7  |-  0  e.  ZZ
52 zq 11794 . . . . . . 7  |-  ( 0  e.  ZZ  ->  0  e.  QQ )
5351, 52ax-mp 5 . . . . . 6  |-  0  e.  QQ
5450, 53syl6eqel 2709 . . . . 5  |-  ( u  e.  ( 0 [,] 1 )  ->  (
u  -  u )  e.  QQ )
5554adantr 481 . . . 4  |-  ( ( u  e.  ( 0 [,] 1 )  /\  u  e.  ( 0 [,] 1 ) )  ->  ( u  -  u )  e.  QQ )
5655pm4.71i 664 . . 3  |-  ( ( u  e.  ( 0 [,] 1 )  /\  u  e.  ( 0 [,] 1 ) )  <-> 
( ( u  e.  ( 0 [,] 1
)  /\  u  e.  ( 0 [,] 1
) )  /\  (
u  -  u )  e.  QQ ) )
57 pm4.24 675 . . 3  |-  ( u  e.  ( 0 [,] 1 )  <->  ( u  e.  ( 0 [,] 1
)  /\  u  e.  ( 0 [,] 1
) ) )
58 oveq12 6659 . . . . 5  |-  ( ( x  =  u  /\  y  =  u )  ->  ( x  -  y
)  =  ( u  -  u ) )
5958eleq1d 2686 . . . 4  |-  ( ( x  =  u  /\  y  =  u )  ->  ( ( x  -  y )  e.  QQ  <->  ( u  -  u )  e.  QQ ) )
6059, 1brab2a 5194 . . 3  |-  ( u  .~  u  <->  ( (
u  e.  ( 0 [,] 1 )  /\  u  e.  ( 0 [,] 1 ) )  /\  ( u  -  u )  e.  QQ ) )
6156, 57, 603bitr4i 292 . 2  |-  ( u  e.  ( 0 [,] 1 )  <->  u  .~  u )
622, 23, 49, 61iseri 7769 1  |-  .~  Er  ( 0 [,] 1
)
Colors of variables: wff setvar class
Syntax hints:    /\ wa 384    = wceq 1483    e. wcel 1990   class class class wbr 4653   {copab 4712  (class class class)co 6650    Er wer 7739   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    - cmin 10266   -ucneg 10267   ZZcz 11377   QQcq 11788   [,]cicc 12178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-z 11378  df-q 11789  df-icc 12182
This theorem is referenced by:  vitalilem2  23378  vitalilem3  23379  vitalilem5  23381  vitali  23382
  Copyright terms: Public domain W3C validator