MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phtpcer Structured version   Visualization version   Unicode version

Theorem phtpcer 22794
Description: Path homotopy is an equivalence relation. Proposition 1.2 of [Hatcher] p. 26. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 6-Jul-2015.) (Proof shortened by AV, 1-May-2021.)
Assertion
Ref Expression
phtpcer  |-  (  ~=ph  `  J )  Er  (
II  Cn  J )

Proof of Theorem phtpcer
Dummy variables  f 
g  u  v  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 phtpcrel 22792 . 2  |-  Rel  (  ~=ph  `  J )
2 isphtpc 22793 . . . 4  |-  ( x (  ~=ph  `  J ) y  <->  ( x  e.  ( II  Cn  J
)  /\  y  e.  ( II  Cn  J
)  /\  ( x
( PHtpy `  J )
y )  =/=  (/) ) )
32simp2bi 1077 . . 3  |-  ( x (  ~=ph  `  J ) y  ->  y  e.  ( II  Cn  J
) )
42simp1bi 1076 . . 3  |-  ( x (  ~=ph  `  J ) y  ->  x  e.  ( II  Cn  J
) )
52simp3bi 1078 . . . . 5  |-  ( x (  ~=ph  `  J ) y  ->  ( x
( PHtpy `  J )
y )  =/=  (/) )
6 n0 3931 . . . . 5  |-  ( ( x ( PHtpy `  J
) y )  =/=  (/) 
<->  E. f  f  e.  ( x ( PHtpy `  J ) y ) )
75, 6sylib 208 . . . 4  |-  ( x (  ~=ph  `  J ) y  ->  E. f 
f  e.  ( x ( PHtpy `  J )
y ) )
84adantr 481 . . . . . 6  |-  ( ( x (  ~=ph  `  J
) y  /\  f  e.  ( x ( PHtpy `  J ) y ) )  ->  x  e.  ( II  Cn  J
) )
93adantr 481 . . . . . 6  |-  ( ( x (  ~=ph  `  J
) y  /\  f  e.  ( x ( PHtpy `  J ) y ) )  ->  y  e.  ( II  Cn  J
) )
10 eqid 2622 . . . . . 6  |-  ( u  e.  ( 0 [,] 1 ) ,  v  e.  ( 0 [,] 1 )  |->  ( u f ( 1  -  v ) ) )  =  ( u  e.  ( 0 [,] 1
) ,  v  e.  ( 0 [,] 1
)  |->  ( u f ( 1  -  v
) ) )
11 simpr 477 . . . . . 6  |-  ( ( x (  ~=ph  `  J
) y  /\  f  e.  ( x ( PHtpy `  J ) y ) )  ->  f  e.  ( x ( PHtpy `  J ) y ) )
128, 9, 10, 11phtpycom 22787 . . . . 5  |-  ( ( x (  ~=ph  `  J
) y  /\  f  e.  ( x ( PHtpy `  J ) y ) )  ->  ( u  e.  ( 0 [,] 1
) ,  v  e.  ( 0 [,] 1
)  |->  ( u f ( 1  -  v
) ) )  e.  ( y ( PHtpy `  J ) x ) )
13 ne0i 3921 . . . . 5  |-  ( ( u  e.  ( 0 [,] 1 ) ,  v  e.  ( 0 [,] 1 )  |->  ( u f ( 1  -  v ) ) )  e.  ( y ( PHtpy `  J )
x )  ->  (
y ( PHtpy `  J
) x )  =/=  (/) )
1412, 13syl 17 . . . 4  |-  ( ( x (  ~=ph  `  J
) y  /\  f  e.  ( x ( PHtpy `  J ) y ) )  ->  ( y
( PHtpy `  J )
x )  =/=  (/) )
157, 14exlimddv 1863 . . 3  |-  ( x (  ~=ph  `  J ) y  ->  ( y
( PHtpy `  J )
x )  =/=  (/) )
16 isphtpc 22793 . . 3  |-  ( y (  ~=ph  `  J ) x  <->  ( y  e.  ( II  Cn  J
)  /\  x  e.  ( II  Cn  J
)  /\  ( y
( PHtpy `  J )
x )  =/=  (/) ) )
173, 4, 15, 16syl3anbrc 1246 . 2  |-  ( x (  ~=ph  `  J ) y  ->  y (  ~=ph  `  J ) x )
184adantr 481 . . 3  |-  ( ( x (  ~=ph  `  J
) y  /\  y
(  ~=ph  `  J )
z )  ->  x  e.  ( II  Cn  J
) )
19 simpr 477 . . . . 5  |-  ( ( x (  ~=ph  `  J
) y  /\  y
(  ~=ph  `  J )
z )  ->  y
(  ~=ph  `  J )
z )
20 isphtpc 22793 . . . . 5  |-  ( y (  ~=ph  `  J ) z  <->  ( y  e.  ( II  Cn  J
)  /\  z  e.  ( II  Cn  J
)  /\  ( y
( PHtpy `  J )
z )  =/=  (/) ) )
2119, 20sylib 208 . . . 4  |-  ( ( x (  ~=ph  `  J
) y  /\  y
(  ~=ph  `  J )
z )  ->  (
y  e.  ( II 
Cn  J )  /\  z  e.  ( II  Cn  J )  /\  (
y ( PHtpy `  J
) z )  =/=  (/) ) )
2221simp2d 1074 . . 3  |-  ( ( x (  ~=ph  `  J
) y  /\  y
(  ~=ph  `  J )
z )  ->  z  e.  ( II  Cn  J
) )
235adantr 481 . . . . . 6  |-  ( ( x (  ~=ph  `  J
) y  /\  y
(  ~=ph  `  J )
z )  ->  (
x ( PHtpy `  J
) y )  =/=  (/) )
2423, 6sylib 208 . . . . 5  |-  ( ( x (  ~=ph  `  J
) y  /\  y
(  ~=ph  `  J )
z )  ->  E. f 
f  e.  ( x ( PHtpy `  J )
y ) )
2521simp3d 1075 . . . . . 6  |-  ( ( x (  ~=ph  `  J
) y  /\  y
(  ~=ph  `  J )
z )  ->  (
y ( PHtpy `  J
) z )  =/=  (/) )
26 n0 3931 . . . . . 6  |-  ( ( y ( PHtpy `  J
) z )  =/=  (/) 
<->  E. g  g  e.  ( y ( PHtpy `  J ) z ) )
2725, 26sylib 208 . . . . 5  |-  ( ( x (  ~=ph  `  J
) y  /\  y
(  ~=ph  `  J )
z )  ->  E. g 
g  e.  ( y ( PHtpy `  J )
z ) )
28 eeanv 2182 . . . . 5  |-  ( E. f E. g ( f  e.  ( x ( PHtpy `  J )
y )  /\  g  e.  ( y ( PHtpy `  J ) z ) )  <->  ( E. f 
f  e.  ( x ( PHtpy `  J )
y )  /\  E. g  g  e.  (
y ( PHtpy `  J
) z ) ) )
2924, 27, 28sylanbrc 698 . . . 4  |-  ( ( x (  ~=ph  `  J
) y  /\  y
(  ~=ph  `  J )
z )  ->  E. f E. g ( f  e.  ( x ( PHtpy `  J ) y )  /\  g  e.  ( y ( PHtpy `  J
) z ) ) )
30 eqid 2622 . . . . . . . 8  |-  ( u  e.  ( 0 [,] 1 ) ,  v  e.  ( 0 [,] 1 )  |->  if ( v  <_  ( 1  /  2 ) ,  ( u f ( 2  x.  v ) ) ,  ( u g ( ( 2  x.  v )  - 
1 ) ) ) )  =  ( u  e.  ( 0 [,] 1 ) ,  v  e.  ( 0 [,] 1 )  |->  if ( v  <_  ( 1  /  2 ) ,  ( u f ( 2  x.  v ) ) ,  ( u g ( ( 2  x.  v )  - 
1 ) ) ) )
3118adantr 481 . . . . . . . 8  |-  ( ( ( x (  ~=ph  `  J ) y  /\  y (  ~=ph  `  J
) z )  /\  ( f  e.  ( x ( PHtpy `  J
) y )  /\  g  e.  ( y
( PHtpy `  J )
z ) ) )  ->  x  e.  ( II  Cn  J ) )
3221simp1d 1073 . . . . . . . . 9  |-  ( ( x (  ~=ph  `  J
) y  /\  y
(  ~=ph  `  J )
z )  ->  y  e.  ( II  Cn  J
) )
3332adantr 481 . . . . . . . 8  |-  ( ( ( x (  ~=ph  `  J ) y  /\  y (  ~=ph  `  J
) z )  /\  ( f  e.  ( x ( PHtpy `  J
) y )  /\  g  e.  ( y
( PHtpy `  J )
z ) ) )  ->  y  e.  ( II  Cn  J ) )
3422adantr 481 . . . . . . . 8  |-  ( ( ( x (  ~=ph  `  J ) y  /\  y (  ~=ph  `  J
) z )  /\  ( f  e.  ( x ( PHtpy `  J
) y )  /\  g  e.  ( y
( PHtpy `  J )
z ) ) )  ->  z  e.  ( II  Cn  J ) )
35 simprl 794 . . . . . . . 8  |-  ( ( ( x (  ~=ph  `  J ) y  /\  y (  ~=ph  `  J
) z )  /\  ( f  e.  ( x ( PHtpy `  J
) y )  /\  g  e.  ( y
( PHtpy `  J )
z ) ) )  ->  f  e.  ( x ( PHtpy `  J
) y ) )
36 simprr 796 . . . . . . . 8  |-  ( ( ( x (  ~=ph  `  J ) y  /\  y (  ~=ph  `  J
) z )  /\  ( f  e.  ( x ( PHtpy `  J
) y )  /\  g  e.  ( y
( PHtpy `  J )
z ) ) )  ->  g  e.  ( y ( PHtpy `  J
) z ) )
3730, 31, 33, 34, 35, 36phtpycc 22790 . . . . . . 7  |-  ( ( ( x (  ~=ph  `  J ) y  /\  y (  ~=ph  `  J
) z )  /\  ( f  e.  ( x ( PHtpy `  J
) y )  /\  g  e.  ( y
( PHtpy `  J )
z ) ) )  ->  ( u  e.  ( 0 [,] 1
) ,  v  e.  ( 0 [,] 1
)  |->  if ( v  <_  ( 1  / 
2 ) ,  ( u f ( 2  x.  v ) ) ,  ( u g ( ( 2  x.  v )  -  1 ) ) ) )  e.  ( x (
PHtpy `  J ) z ) )
38 ne0i 3921 . . . . . . 7  |-  ( ( u  e.  ( 0 [,] 1 ) ,  v  e.  ( 0 [,] 1 )  |->  if ( v  <_  (
1  /  2 ) ,  ( u f ( 2  x.  v
) ) ,  ( u g ( ( 2  x.  v )  -  1 ) ) ) )  e.  ( x ( PHtpy `  J
) z )  -> 
( x ( PHtpy `  J ) z )  =/=  (/) )
3937, 38syl 17 . . . . . 6  |-  ( ( ( x (  ~=ph  `  J ) y  /\  y (  ~=ph  `  J
) z )  /\  ( f  e.  ( x ( PHtpy `  J
) y )  /\  g  e.  ( y
( PHtpy `  J )
z ) ) )  ->  ( x (
PHtpy `  J ) z )  =/=  (/) )
4039ex 450 . . . . 5  |-  ( ( x (  ~=ph  `  J
) y  /\  y
(  ~=ph  `  J )
z )  ->  (
( f  e.  ( x ( PHtpy `  J
) y )  /\  g  e.  ( y
( PHtpy `  J )
z ) )  -> 
( x ( PHtpy `  J ) z )  =/=  (/) ) )
4140exlimdvv 1862 . . . 4  |-  ( ( x (  ~=ph  `  J
) y  /\  y
(  ~=ph  `  J )
z )  ->  ( E. f E. g ( f  e.  ( x ( PHtpy `  J )
y )  /\  g  e.  ( y ( PHtpy `  J ) z ) )  ->  ( x
( PHtpy `  J )
z )  =/=  (/) ) )
4229, 41mpd 15 . . 3  |-  ( ( x (  ~=ph  `  J
) y  /\  y
(  ~=ph  `  J )
z )  ->  (
x ( PHtpy `  J
) z )  =/=  (/) )
43 isphtpc 22793 . . 3  |-  ( x (  ~=ph  `  J ) z  <->  ( x  e.  ( II  Cn  J
)  /\  z  e.  ( II  Cn  J
)  /\  ( x
( PHtpy `  J )
z )  =/=  (/) ) )
4418, 22, 42, 43syl3anbrc 1246 . 2  |-  ( ( x (  ~=ph  `  J
) y  /\  y
(  ~=ph  `  J )
z )  ->  x
(  ~=ph  `  J )
z )
45 eqid 2622 . . . . . . . 8  |-  ( y  e.  ( 0 [,] 1 ) ,  z  e.  ( 0 [,] 1 )  |->  ( x `
 y ) )  =  ( y  e.  ( 0 [,] 1
) ,  z  e.  ( 0 [,] 1
)  |->  ( x `  y ) )
46 id 22 . . . . . . . 8  |-  ( x  e.  ( II  Cn  J )  ->  x  e.  ( II  Cn  J
) )
4745, 46phtpyid 22788 . . . . . . 7  |-  ( x  e.  ( II  Cn  J )  ->  (
y  e.  ( 0 [,] 1 ) ,  z  e.  ( 0 [,] 1 )  |->  ( x `  y ) )  e.  ( x ( PHtpy `  J )
x ) )
48 ne0i 3921 . . . . . . 7  |-  ( ( y  e.  ( 0 [,] 1 ) ,  z  e.  ( 0 [,] 1 )  |->  ( x `  y ) )  e.  ( x ( PHtpy `  J )
x )  ->  (
x ( PHtpy `  J
) x )  =/=  (/) )
4947, 48syl 17 . . . . . 6  |-  ( x  e.  ( II  Cn  J )  ->  (
x ( PHtpy `  J
) x )  =/=  (/) )
5049ancli 574 . . . . 5  |-  ( x  e.  ( II  Cn  J )  ->  (
x  e.  ( II 
Cn  J )  /\  ( x ( PHtpy `  J ) x )  =/=  (/) ) )
5150pm4.71ri 665 . . . 4  |-  ( x  e.  ( II  Cn  J )  <->  ( (
x  e.  ( II 
Cn  J )  /\  ( x ( PHtpy `  J ) x )  =/=  (/) )  /\  x  e.  ( II  Cn  J
) ) )
52 df-3an 1039 . . . 4  |-  ( ( x  e.  ( II 
Cn  J )  /\  ( x ( PHtpy `  J ) x )  =/=  (/)  /\  x  e.  ( II  Cn  J
) )  <->  ( (
x  e.  ( II 
Cn  J )  /\  ( x ( PHtpy `  J ) x )  =/=  (/) )  /\  x  e.  ( II  Cn  J
) ) )
53 3ancomb 1047 . . . 4  |-  ( ( x  e.  ( II 
Cn  J )  /\  ( x ( PHtpy `  J ) x )  =/=  (/)  /\  x  e.  ( II  Cn  J
) )  <->  ( x  e.  ( II  Cn  J
)  /\  x  e.  ( II  Cn  J
)  /\  ( x
( PHtpy `  J )
x )  =/=  (/) ) )
5451, 52, 533bitr2i 288 . . 3  |-  ( x  e.  ( II  Cn  J )  <->  ( x  e.  ( II  Cn  J
)  /\  x  e.  ( II  Cn  J
)  /\  ( x
( PHtpy `  J )
x )  =/=  (/) ) )
55 isphtpc 22793 . . 3  |-  ( x (  ~=ph  `  J ) x  <->  ( x  e.  ( II  Cn  J
)  /\  x  e.  ( II  Cn  J
)  /\  ( x
( PHtpy `  J )
x )  =/=  (/) ) )
5654, 55bitr4i 267 . 2  |-  ( x  e.  ( II  Cn  J )  <->  x (  ~=ph  `  J ) x )
571, 17, 44, 56iseri 7769 1  |-  (  ~=ph  `  J )  Er  (
II  Cn  J )
Colors of variables: wff setvar class
Syntax hints:    /\ wa 384    /\ w3a 1037   E.wex 1704    e. wcel 1990    =/= wne 2794   (/)c0 3915   ifcif 4086   class class class wbr 4653   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652    Er wer 7739   0cc0 9936   1c1 9937    x. cmul 9941    <_ cle 10075    - cmin 10266    / cdiv 10684   2c2 11070   [,]cicc 12178    Cn ccn 21028   IIcii 22678   PHtpycphtpy 22767    ~=ph cphtpc 22768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-cn 21031  df-cnp 21032  df-tx 21365  df-hmeo 21558  df-xms 22125  df-ms 22126  df-tms 22127  df-ii 22680  df-htpy 22769  df-phtpy 22770  df-phtpc 22791
This theorem is referenced by:  pcophtb  22829  pi1buni  22840  pi1addf  22847  pi1addval  22848  pi1grplem  22849  pi1inv  22852  pi1xfrf  22853  pi1xfr  22855  pi1xfrcnvlem  22856  pi1cof  22859  sconnpi1  31221
  Copyright terms: Public domain W3C validator