MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfcls2 Structured version   Visualization version   Unicode version

Theorem isfcls2 21817
Description: A cluster point of a filter. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
isfcls2  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  ->  ( A  e.  ( J  fClus  F )  <->  A. s  e.  F  A  e.  ( ( cls `  J
) `  s )
) )
Distinct variable groups:    A, s    F, s    J, s    X, s

Proof of Theorem isfcls2
StepHypRef Expression
1 topontop 20718 . . 3  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
21adantr 481 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  ->  J  e.  Top )
3 toponuni 20719 . . . . 5  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
43fveq2d 6195 . . . 4  |-  ( J  e.  (TopOn `  X
)  ->  ( Fil `  X )  =  ( Fil `  U. J
) )
54eleq2d 2687 . . 3  |-  ( J  e.  (TopOn `  X
)  ->  ( F  e.  ( Fil `  X
)  <->  F  e.  ( Fil `  U. J ) ) )
65biimpa 501 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  ->  F  e.  ( Fil `  U. J ) )
7 eqid 2622 . . . . 5  |-  U. J  =  U. J
87isfcls 21813 . . . 4  |-  ( A  e.  ( J  fClus  F )  <->  ( J  e. 
Top  /\  F  e.  ( Fil `  U. J
)  /\  A. s  e.  F  A  e.  ( ( cls `  J
) `  s )
) )
9 df-3an 1039 . . . 4  |-  ( ( J  e.  Top  /\  F  e.  ( Fil ` 
U. J )  /\  A. s  e.  F  A  e.  ( ( cls `  J
) `  s )
)  <->  ( ( J  e.  Top  /\  F  e.  ( Fil `  U. J ) )  /\  A. s  e.  F  A  e.  ( ( cls `  J
) `  s )
) )
108, 9bitri 264 . . 3  |-  ( A  e.  ( J  fClus  F )  <->  ( ( J  e.  Top  /\  F  e.  ( Fil `  U. J ) )  /\  A. s  e.  F  A  e.  ( ( cls `  J
) `  s )
) )
1110baib 944 . 2  |-  ( ( J  e.  Top  /\  F  e.  ( Fil ` 
U. J ) )  ->  ( A  e.  ( J  fClus  F )  <->  A. s  e.  F  A  e.  ( ( cls `  J ) `  s ) ) )
122, 6, 11syl2anc 693 1  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  ->  ( A  e.  ( J  fClus  F )  <->  A. s  e.  F  A  e.  ( ( cls `  J
) `  s )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    e. wcel 1990   A.wral 2912   U.cuni 4436   ` cfv 5888  (class class class)co 6650   Topctop 20698  TopOnctopon 20715   clsccl 20822   Filcfil 21649    fClus cfcls 21740
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-fbas 19743  df-topon 20716  df-fil 21650  df-fcls 21745
This theorem is referenced by:  fclsopn  21818  fclsss2  21827
  Copyright terms: Public domain W3C validator