MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfcls Structured version   Visualization version   Unicode version

Theorem isfcls 21813
Description: A cluster point of a filter. (Contributed by Jeff Hankins, 10-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Hypothesis
Ref Expression
fclsval.x  |-  X  = 
U. J
Assertion
Ref Expression
isfcls  |-  ( A  e.  ( J  fClus  F )  <->  ( J  e. 
Top  /\  F  e.  ( Fil `  X )  /\  A. s  e.  F  A  e.  ( ( cls `  J
) `  s )
) )
Distinct variable groups:    A, s    F, s    X, s    J, s

Proof of Theorem isfcls
Dummy variables  f 
j  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 anass 681 . 2  |-  ( ( ( ( J  e. 
Top  /\  F  e.  U.
ran  Fil )  /\  X  =  U. F )  /\  A. s  e.  F  A  e.  ( ( cls `  J
) `  s )
)  <->  ( ( J  e.  Top  /\  F  e.  U. ran  Fil )  /\  ( X  =  U. F  /\  A. s  e.  F  A  e.  ( ( cls `  J
) `  s )
) ) )
2 fvssunirn 6217 . . . . . . . 8  |-  ( Fil `  X )  C_  U. ran  Fil
32sseli 3599 . . . . . . 7  |-  ( F  e.  ( Fil `  X
)  ->  F  e.  U.
ran  Fil )
4 filunibas 21685 . . . . . . . 8  |-  ( F  e.  ( Fil `  X
)  ->  U. F  =  X )
54eqcomd 2628 . . . . . . 7  |-  ( F  e.  ( Fil `  X
)  ->  X  =  U. F )
63, 5jca 554 . . . . . 6  |-  ( F  e.  ( Fil `  X
)  ->  ( F  e.  U. ran  Fil  /\  X  =  U. F ) )
7 filunirn 21686 . . . . . . 7  |-  ( F  e.  U. ran  Fil  <->  F  e.  ( Fil `  U. F ) )
8 fveq2 6191 . . . . . . . . 9  |-  ( X  =  U. F  -> 
( Fil `  X
)  =  ( Fil `  U. F ) )
98eleq2d 2687 . . . . . . . 8  |-  ( X  =  U. F  -> 
( F  e.  ( Fil `  X )  <-> 
F  e.  ( Fil `  U. F ) ) )
109biimparc 504 . . . . . . 7  |-  ( ( F  e.  ( Fil `  U. F )  /\  X  =  U. F )  ->  F  e.  ( Fil `  X ) )
117, 10sylanb 489 . . . . . 6  |-  ( ( F  e.  U. ran  Fil 
/\  X  =  U. F )  ->  F  e.  ( Fil `  X
) )
126, 11impbii 199 . . . . 5  |-  ( F  e.  ( Fil `  X
)  <->  ( F  e. 
U. ran  Fil  /\  X  =  U. F ) )
1312anbi2i 730 . . . 4  |-  ( ( J  e.  Top  /\  F  e.  ( Fil `  X ) )  <->  ( J  e.  Top  /\  ( F  e.  U. ran  Fil  /\  X  =  U. F
) ) )
1413anbi1i 731 . . 3  |-  ( ( ( J  e.  Top  /\  F  e.  ( Fil `  X ) )  /\  A. s  e.  F  A  e.  ( ( cls `  J
) `  s )
)  <->  ( ( J  e.  Top  /\  ( F  e.  U. ran  Fil  /\  X  =  U. F
) )  /\  A. s  e.  F  A  e.  ( ( cls `  J
) `  s )
) )
15 df-3an 1039 . . 3  |-  ( ( J  e.  Top  /\  F  e.  ( Fil `  X )  /\  A. s  e.  F  A  e.  ( ( cls `  J
) `  s )
)  <->  ( ( J  e.  Top  /\  F  e.  ( Fil `  X
) )  /\  A. s  e.  F  A  e.  ( ( cls `  J
) `  s )
) )
16 anass 681 . . . 4  |-  ( ( ( J  e.  Top  /\  F  e.  U. ran  Fil )  /\  X  = 
U. F )  <->  ( J  e.  Top  /\  ( F  e.  U. ran  Fil  /\  X  =  U. F
) ) )
1716anbi1i 731 . . 3  |-  ( ( ( ( J  e. 
Top  /\  F  e.  U.
ran  Fil )  /\  X  =  U. F )  /\  A. s  e.  F  A  e.  ( ( cls `  J
) `  s )
)  <->  ( ( J  e.  Top  /\  ( F  e.  U. ran  Fil  /\  X  =  U. F
) )  /\  A. s  e.  F  A  e.  ( ( cls `  J
) `  s )
) )
1814, 15, 173bitr4i 292 . 2  |-  ( ( J  e.  Top  /\  F  e.  ( Fil `  X )  /\  A. s  e.  F  A  e.  ( ( cls `  J
) `  s )
)  <->  ( ( ( J  e.  Top  /\  F  e.  U. ran  Fil )  /\  X  =  U. F )  /\  A. s  e.  F  A  e.  ( ( cls `  J
) `  s )
) )
19 df-fcls 21745 . . . 4  |-  fClus  =  ( j  e.  Top , 
f  e.  U. ran  Fil  |->  if ( U. j  =  U. f ,  |^|_ x  e.  f  ( ( cls `  j ) `
 x ) ,  (/) ) )
2019elmpt2cl 6876 . . 3  |-  ( A  e.  ( J  fClus  F )  ->  ( J  e.  Top  /\  F  e. 
U. ran  Fil )
)
21 fclsval.x . . . . . . 7  |-  X  = 
U. J
2221fclsval 21812 . . . . . 6  |-  ( ( J  e.  Top  /\  F  e.  ( Fil ` 
U. F ) )  ->  ( J  fClus  F )  =  if ( X  =  U. F ,  |^|_ s  e.  F  ( ( cls `  J
) `  s ) ,  (/) ) )
237, 22sylan2b 492 . . . . 5  |-  ( ( J  e.  Top  /\  F  e.  U. ran  Fil )  ->  ( J  fClus  F )  =  if ( X  =  U. F ,  |^|_ s  e.  F  ( ( cls `  J
) `  s ) ,  (/) ) )
2423eleq2d 2687 . . . 4  |-  ( ( J  e.  Top  /\  F  e.  U. ran  Fil )  ->  ( A  e.  ( J  fClus  F )  <-> 
A  e.  if ( X  =  U. F ,  |^|_ s  e.  F  ( ( cls `  J
) `  s ) ,  (/) ) ) )
25 n0i 3920 . . . . . . 7  |-  ( A  e.  if ( X  =  U. F ,  |^|_ s  e.  F  ( ( cls `  J
) `  s ) ,  (/) )  ->  -.  if ( X  =  U. F ,  |^|_ s  e.  F  ( ( cls `  J ) `  s
) ,  (/) )  =  (/) )
26 iffalse 4095 . . . . . . 7  |-  ( -.  X  =  U. F  ->  if ( X  = 
U. F ,  |^|_ s  e.  F  (
( cls `  J
) `  s ) ,  (/) )  =  (/) )
2725, 26nsyl2 142 . . . . . 6  |-  ( A  e.  if ( X  =  U. F ,  |^|_ s  e.  F  ( ( cls `  J
) `  s ) ,  (/) )  ->  X  =  U. F )
2827a1i 11 . . . . 5  |-  ( ( J  e.  Top  /\  F  e.  U. ran  Fil )  ->  ( A  e.  if ( X  = 
U. F ,  |^|_ s  e.  F  (
( cls `  J
) `  s ) ,  (/) )  ->  X  =  U. F ) )
2928pm4.71rd 667 . . . 4  |-  ( ( J  e.  Top  /\  F  e.  U. ran  Fil )  ->  ( A  e.  if ( X  = 
U. F ,  |^|_ s  e.  F  (
( cls `  J
) `  s ) ,  (/) )  <->  ( X  =  U. F  /\  A  e.  if ( X  = 
U. F ,  |^|_ s  e.  F  (
( cls `  J
) `  s ) ,  (/) ) ) ) )
30 iftrue 4092 . . . . . . . 8  |-  ( X  =  U. F  ->  if ( X  =  U. F ,  |^|_ s  e.  F  ( ( cls `  J ) `  s
) ,  (/) )  = 
|^|_ s  e.  F  ( ( cls `  J
) `  s )
)
3130adantl 482 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  F  e.  U. ran  Fil )  /\  X  = 
U. F )  ->  if ( X  =  U. F ,  |^|_ s  e.  F  ( ( cls `  J ) `  s
) ,  (/) )  = 
|^|_ s  e.  F  ( ( cls `  J
) `  s )
)
3231eleq2d 2687 . . . . . 6  |-  ( ( ( J  e.  Top  /\  F  e.  U. ran  Fil )  /\  X  = 
U. F )  -> 
( A  e.  if ( X  =  U. F ,  |^|_ s  e.  F  ( ( cls `  J ) `  s
) ,  (/) )  <->  A  e.  |^|_ s  e.  F  ( ( cls `  J
) `  s )
) )
33 elex 3212 . . . . . . . 8  |-  ( A  e.  |^|_ s  e.  F  ( ( cls `  J
) `  s )  ->  A  e.  _V )
3433a1i 11 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  F  e.  U. ran  Fil )  /\  X  = 
U. F )  -> 
( A  e.  |^|_ s  e.  F  (
( cls `  J
) `  s )  ->  A  e.  _V )
)
35 filn0 21666 . . . . . . . . . . 11  |-  ( F  e.  ( Fil `  U. F )  ->  F  =/=  (/) )
367, 35sylbi 207 . . . . . . . . . 10  |-  ( F  e.  U. ran  Fil  ->  F  =/=  (/) )
3736ad2antlr 763 . . . . . . . . 9  |-  ( ( ( J  e.  Top  /\  F  e.  U. ran  Fil )  /\  X  = 
U. F )  ->  F  =/=  (/) )
38 r19.2z 4060 . . . . . . . . . 10  |-  ( ( F  =/=  (/)  /\  A. s  e.  F  A  e.  ( ( cls `  J
) `  s )
)  ->  E. s  e.  F  A  e.  ( ( cls `  J
) `  s )
)
3938ex 450 . . . . . . . . 9  |-  ( F  =/=  (/)  ->  ( A. s  e.  F  A  e.  ( ( cls `  J
) `  s )  ->  E. s  e.  F  A  e.  ( ( cls `  J ) `  s ) ) )
4037, 39syl 17 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  F  e.  U. ran  Fil )  /\  X  = 
U. F )  -> 
( A. s  e.  F  A  e.  ( ( cls `  J
) `  s )  ->  E. s  e.  F  A  e.  ( ( cls `  J ) `  s ) ) )
41 elex 3212 . . . . . . . . 9  |-  ( A  e.  ( ( cls `  J ) `  s
)  ->  A  e.  _V )
4241rexlimivw 3029 . . . . . . . 8  |-  ( E. s  e.  F  A  e.  ( ( cls `  J
) `  s )  ->  A  e.  _V )
4340, 42syl6 35 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  F  e.  U. ran  Fil )  /\  X  = 
U. F )  -> 
( A. s  e.  F  A  e.  ( ( cls `  J
) `  s )  ->  A  e.  _V )
)
44 eliin 4525 . . . . . . . 8  |-  ( A  e.  _V  ->  ( A  e.  |^|_ s  e.  F  ( ( cls `  J ) `  s
)  <->  A. s  e.  F  A  e.  ( ( cls `  J ) `  s ) ) )
4544a1i 11 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  F  e.  U. ran  Fil )  /\  X  = 
U. F )  -> 
( A  e.  _V  ->  ( A  e.  |^|_ s  e.  F  (
( cls `  J
) `  s )  <->  A. s  e.  F  A  e.  ( ( cls `  J
) `  s )
) ) )
4634, 43, 45pm5.21ndd 369 . . . . . 6  |-  ( ( ( J  e.  Top  /\  F  e.  U. ran  Fil )  /\  X  = 
U. F )  -> 
( A  e.  |^|_ s  e.  F  (
( cls `  J
) `  s )  <->  A. s  e.  F  A  e.  ( ( cls `  J
) `  s )
) )
4732, 46bitrd 268 . . . . 5  |-  ( ( ( J  e.  Top  /\  F  e.  U. ran  Fil )  /\  X  = 
U. F )  -> 
( A  e.  if ( X  =  U. F ,  |^|_ s  e.  F  ( ( cls `  J ) `  s
) ,  (/) )  <->  A. s  e.  F  A  e.  ( ( cls `  J
) `  s )
) )
4847pm5.32da 673 . . . 4  |-  ( ( J  e.  Top  /\  F  e.  U. ran  Fil )  ->  ( ( X  =  U. F  /\  A  e.  if ( X  =  U. F ,  |^|_ s  e.  F  ( ( cls `  J
) `  s ) ,  (/) ) )  <->  ( X  =  U. F  /\  A. s  e.  F  A  e.  ( ( cls `  J
) `  s )
) ) )
4924, 29, 483bitrd 294 . . 3  |-  ( ( J  e.  Top  /\  F  e.  U. ran  Fil )  ->  ( A  e.  ( J  fClus  F )  <-> 
( X  =  U. F  /\  A. s  e.  F  A  e.  ( ( cls `  J
) `  s )
) ) )
5020, 49biadan2 674 . 2  |-  ( A  e.  ( J  fClus  F )  <->  ( ( J  e.  Top  /\  F  e.  U. ran  Fil )  /\  ( X  =  U. F  /\  A. s  e.  F  A  e.  ( ( cls `  J
) `  s )
) ) )
511, 18, 503bitr4ri 293 1  |-  ( A  e.  ( J  fClus  F )  <->  ( J  e. 
Top  /\  F  e.  ( Fil `  X )  /\  A. s  e.  F  A  e.  ( ( cls `  J
) `  s )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   _Vcvv 3200   (/)c0 3915   ifcif 4086   U.cuni 4436   |^|_ciin 4521   ran crn 5115   ` cfv 5888  (class class class)co 6650   Topctop 20698   clsccl 20822   Filcfil 21649    fClus cfcls 21740
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-fbas 19743  df-fil 21650  df-fcls 21745
This theorem is referenced by:  fclsfil  21814  fclstop  21815  isfcls2  21817  fclssscls  21822  flimfcls  21830
  Copyright terms: Public domain W3C validator