MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isgrpd Structured version   Visualization version   Unicode version

Theorem isgrpd 17444
Description: Deduce a group from its properties. Unlike isgrpd2 17442, this one goes straight from the base properties rather than going through  Mnd.  N (negative) is normally dependent on  x i.e. read it as  N ( x ). (Contributed by NM, 6-Jun-2013.) (Revised by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
isgrpd.b  |-  ( ph  ->  B  =  ( Base `  G ) )
isgrpd.p  |-  ( ph  ->  .+  =  ( +g  `  G ) )
isgrpd.c  |-  ( (
ph  /\  x  e.  B  /\  y  e.  B
)  ->  ( x  .+  y )  e.  B
)
isgrpd.a  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) )
isgrpd.z  |-  ( ph  ->  .0.  e.  B )
isgrpd.i  |-  ( (
ph  /\  x  e.  B )  ->  (  .0.  .+  x )  =  x )
isgrpd.n  |-  ( (
ph  /\  x  e.  B )  ->  N  e.  B )
isgrpd.j  |-  ( (
ph  /\  x  e.  B )  ->  ( N  .+  x )  =  .0.  )
Assertion
Ref Expression
isgrpd  |-  ( ph  ->  G  e.  Grp )
Distinct variable groups:    x, y,
z,  .+    x,  .0. , y,
z    x, B, y, z   
y, N    ph, x, y, z    x, G, y, z
Allowed substitution hints:    N( x, z)

Proof of Theorem isgrpd
StepHypRef Expression
1 isgrpd.b . 2  |-  ( ph  ->  B  =  ( Base `  G ) )
2 isgrpd.p . 2  |-  ( ph  ->  .+  =  ( +g  `  G ) )
3 isgrpd.c . 2  |-  ( (
ph  /\  x  e.  B  /\  y  e.  B
)  ->  ( x  .+  y )  e.  B
)
4 isgrpd.a . 2  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) )
5 isgrpd.z . 2  |-  ( ph  ->  .0.  e.  B )
6 isgrpd.i . 2  |-  ( (
ph  /\  x  e.  B )  ->  (  .0.  .+  x )  =  x )
7 isgrpd.n . . 3  |-  ( (
ph  /\  x  e.  B )  ->  N  e.  B )
8 isgrpd.j . . 3  |-  ( (
ph  /\  x  e.  B )  ->  ( N  .+  x )  =  .0.  )
9 oveq1 6657 . . . . 5  |-  ( y  =  N  ->  (
y  .+  x )  =  ( N  .+  x ) )
109eqeq1d 2624 . . . 4  |-  ( y  =  N  ->  (
( y  .+  x
)  =  .0.  <->  ( N  .+  x )  =  .0.  ) )
1110rspcev 3309 . . 3  |-  ( ( N  e.  B  /\  ( N  .+  x )  =  .0.  )  ->  E. y  e.  B  ( y  .+  x
)  =  .0.  )
127, 8, 11syl2anc 693 . 2  |-  ( (
ph  /\  x  e.  B )  ->  E. y  e.  B  ( y  .+  x )  =  .0.  )
131, 2, 3, 4, 5, 6, 12isgrpde 17443 1  |-  ( ph  ->  G  e.  Grp )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   E.wrex 2913   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941   Grpcgrp 17422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-riota 6611  df-ov 6653  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425
This theorem is referenced by:  isgrpi  17445  issubg2  17609  symggrp  17820  isdrngd  18772  psrgrp  19398  cnlmod  22940  dchrabl  24979  motgrp  25438  ldualgrplem  34432  tgrpgrplem  36037  erngdvlem1  36276  erngdvlem1-rN  36284  dvhgrp  36396  mendring  37762
  Copyright terms: Public domain W3C validator