Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvhgrp Structured version   Visualization version   Unicode version

Theorem dvhgrp 36396
Description: The full vector space  U constructed from a Hilbert lattice  K (given a fiducial hyperplane 
W) is a group. (Contributed by NM, 19-Oct-2013.) (Revised by Mario Carneiro, 24-Jun-2014.)
Hypotheses
Ref Expression
dvhgrp.b  |-  B  =  ( Base `  K
)
dvhgrp.h  |-  H  =  ( LHyp `  K
)
dvhgrp.t  |-  T  =  ( ( LTrn `  K
) `  W )
dvhgrp.e  |-  E  =  ( ( TEndo `  K
) `  W )
dvhgrp.u  |-  U  =  ( ( DVecH `  K
) `  W )
dvhgrp.d  |-  D  =  (Scalar `  U )
dvhgrp.p  |-  .+^  =  ( +g  `  D )
dvhgrp.a  |-  .+  =  ( +g  `  U )
dvhgrp.o  |-  .0.  =  ( 0g `  D )
dvhgrp.i  |-  I  =  ( invg `  D )
Assertion
Ref Expression
dvhgrp  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  U  e.  Grp )

Proof of Theorem dvhgrp
Dummy variables  f 
g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvhgrp.h . . . 4  |-  H  =  ( LHyp `  K
)
2 dvhgrp.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
3 dvhgrp.e . . . 4  |-  E  =  ( ( TEndo `  K
) `  W )
4 dvhgrp.u . . . 4  |-  U  =  ( ( DVecH `  K
) `  W )
5 eqid 2622 . . . 4  |-  ( Base `  U )  =  (
Base `  U )
61, 2, 3, 4, 5dvhvbase 36376 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( Base `  U
)  =  ( T  X.  E ) )
76eqcomd 2628 . 2  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( T  X.  E
)  =  ( Base `  U ) )
8 dvhgrp.a . . 3  |-  .+  =  ( +g  `  U )
98a1i 11 . 2  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  .+  =  ( +g  `  U ) )
10 dvhgrp.d . . . 4  |-  D  =  (Scalar `  U )
11 dvhgrp.p . . . 4  |-  .+^  =  ( +g  `  D )
121, 2, 3, 4, 10, 11, 8dvhvaddcl 36384 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( f  e.  ( T  X.  E
)  /\  g  e.  ( T  X.  E
) ) )  -> 
( f  .+  g
)  e.  ( T  X.  E ) )
13123impb 1260 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  f  e.  ( T  X.  E )  /\  g  e.  ( T  X.  E ) )  ->  ( f  .+  g )  e.  ( T  X.  E ) )
141, 2, 3, 4, 10, 11, 8dvhvaddass 36386 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( f  e.  ( T  X.  E
)  /\  g  e.  ( T  X.  E
)  /\  h  e.  ( T  X.  E
) ) )  -> 
( ( f  .+  g )  .+  h
)  =  ( f 
.+  ( g  .+  h ) ) )
15 dvhgrp.b . . . 4  |-  B  =  ( Base `  K
)
1615, 1, 2idltrn 35436 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  (  _I  |`  B )  e.  T )
17 eqid 2622 . . . . . . . 8  |-  ( (
EDRing `  K ) `  W )  =  ( ( EDRing `  K ) `  W )
181, 17, 4, 10dvhsca 36371 . . . . . . 7  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  D  =  ( (
EDRing `  K ) `  W ) )
191, 17erngdv 36281 . . . . . . 7  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( ( EDRing `  K
) `  W )  e.  DivRing )
2018, 19eqeltrd 2701 . . . . . 6  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  D  e.  DivRing )
21 drnggrp 18755 . . . . . 6  |-  ( D  e.  DivRing  ->  D  e.  Grp )
2220, 21syl 17 . . . . 5  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  D  e.  Grp )
23 eqid 2622 . . . . . 6  |-  ( Base `  D )  =  (
Base `  D )
24 dvhgrp.o . . . . . 6  |-  .0.  =  ( 0g `  D )
2523, 24grpidcl 17450 . . . . 5  |-  ( D  e.  Grp  ->  .0.  e.  ( Base `  D
) )
2622, 25syl 17 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  .0.  e.  ( Base `  D ) )
271, 3, 4, 10, 23dvhbase 36372 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( Base `  D
)  =  E )
2826, 27eleqtrd 2703 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  .0.  e.  E )
29 opelxpi 5148 . . 3  |-  ( ( (  _I  |`  B )  e.  T  /\  .0.  e.  E )  ->  <. (  _I  |`  B ) ,  .0.  >.  e.  ( T  X.  E ) )
3016, 28, 29syl2anc 693 . 2  |-  ( ( K  e.  HL  /\  W  e.  H )  -> 
<. (  _I  |`  B ) ,  .0.  >.  e.  ( T  X.  E ) )
31 simpl 473 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  f  e.  ( T  X.  E ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
3216adantr 481 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  f  e.  ( T  X.  E ) )  ->  (  _I  |`  B )  e.  T
)
3328adantr 481 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  f  e.  ( T  X.  E ) )  ->  .0.  e.  E )
34 xp1st 7198 . . . . . 6  |-  ( f  e.  ( T  X.  E )  ->  ( 1st `  f )  e.  T )
3534adantl 482 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  f  e.  ( T  X.  E ) )  ->  ( 1st `  f )  e.  T
)
36 xp2nd 7199 . . . . . 6  |-  ( f  e.  ( T  X.  E )  ->  ( 2nd `  f )  e.  E )
3736adantl 482 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  f  e.  ( T  X.  E ) )  ->  ( 2nd `  f )  e.  E
)
381, 2, 3, 4, 10, 8, 11dvhopvadd 36382 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( (  _I  |`  B )  e.  T  /\  .0.  e.  E )  /\  ( ( 1st `  f )  e.  T  /\  ( 2nd `  f
)  e.  E ) )  ->  ( <. (  _I  |`  B ) ,  .0.  >.  .+  <. ( 1st `  f ) ,  ( 2nd `  f )
>. )  =  <. ( (  _I  |`  B )  o.  ( 1st `  f
) ) ,  (  .0.  .+^  ( 2nd `  f
) ) >. )
3931, 32, 33, 35, 37, 38syl122anc 1335 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  f  e.  ( T  X.  E ) )  ->  ( <. (  _I  |`  B ) ,  .0.  >.  .+  <. ( 1st `  f ) ,  ( 2nd `  f )
>. )  =  <. ( (  _I  |`  B )  o.  ( 1st `  f
) ) ,  (  .0.  .+^  ( 2nd `  f
) ) >. )
4015, 1, 2ltrn1o 35410 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( 1st `  f
)  e.  T )  ->  ( 1st `  f
) : B -1-1-onto-> B )
4135, 40syldan 487 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  f  e.  ( T  X.  E ) )  ->  ( 1st `  f ) : B -1-1-onto-> B
)
42 f1of 6137 . . . . . 6  |-  ( ( 1st `  f ) : B -1-1-onto-> B  ->  ( 1st `  f ) : B --> B )
43 fcoi2 6079 . . . . . 6  |-  ( ( 1st `  f ) : B --> B  -> 
( (  _I  |`  B )  o.  ( 1st `  f
) )  =  ( 1st `  f ) )
4441, 42, 433syl 18 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  f  e.  ( T  X.  E ) )  ->  ( (  _I  |`  B )  o.  ( 1st `  f
) )  =  ( 1st `  f ) )
4522adantr 481 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  f  e.  ( T  X.  E ) )  ->  D  e.  Grp )
4627adantr 481 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  f  e.  ( T  X.  E ) )  ->  ( Base `  D )  =  E )
4737, 46eleqtrrd 2704 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  f  e.  ( T  X.  E ) )  ->  ( 2nd `  f )  e.  (
Base `  D )
)
4823, 11, 24grplid 17452 . . . . . 6  |-  ( ( D  e.  Grp  /\  ( 2nd `  f )  e.  ( Base `  D
) )  ->  (  .0.  .+^  ( 2nd `  f
) )  =  ( 2nd `  f ) )
4945, 47, 48syl2anc 693 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  f  e.  ( T  X.  E ) )  ->  (  .0.  .+^  ( 2nd `  f
) )  =  ( 2nd `  f ) )
5044, 49opeq12d 4410 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  f  e.  ( T  X.  E ) )  ->  <. ( (  _I  |`  B )  o.  ( 1st `  f
) ) ,  (  .0.  .+^  ( 2nd `  f
) ) >.  =  <. ( 1st `  f ) ,  ( 2nd `  f
) >. )
5139, 50eqtrd 2656 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  f  e.  ( T  X.  E ) )  ->  ( <. (  _I  |`  B ) ,  .0.  >.  .+  <. ( 1st `  f ) ,  ( 2nd `  f )
>. )  =  <. ( 1st `  f ) ,  ( 2nd `  f
) >. )
52 1st2nd2 7205 . . . . 5  |-  ( f  e.  ( T  X.  E )  ->  f  =  <. ( 1st `  f
) ,  ( 2nd `  f ) >. )
5352adantl 482 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  f  e.  ( T  X.  E ) )  ->  f  =  <. ( 1st `  f
) ,  ( 2nd `  f ) >. )
5453oveq2d 6666 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  f  e.  ( T  X.  E ) )  ->  ( <. (  _I  |`  B ) ,  .0.  >.  .+  f )  =  ( <. (  _I  |`  B ) ,  .0.  >.  .+  <. ( 1st `  f ) ,  ( 2nd `  f )
>. ) )
5551, 54, 533eqtr4d 2666 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  f  e.  ( T  X.  E ) )  ->  ( <. (  _I  |`  B ) ,  .0.  >.  .+  f )  =  f )
561, 2ltrncnv 35432 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( 1st `  f
)  e.  T )  ->  `' ( 1st `  f )  e.  T
)
5735, 56syldan 487 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  f  e.  ( T  X.  E ) )  ->  `' ( 1st `  f )  e.  T )
58 dvhgrp.i . . . . . 6  |-  I  =  ( invg `  D )
5923, 58grpinvcl 17467 . . . . 5  |-  ( ( D  e.  Grp  /\  ( 2nd `  f )  e.  ( Base `  D
) )  ->  (
I `  ( 2nd `  f ) )  e.  ( Base `  D
) )
6045, 47, 59syl2anc 693 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  f  e.  ( T  X.  E ) )  ->  ( I `  ( 2nd `  f
) )  e.  (
Base `  D )
)
6160, 46eleqtrd 2703 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  f  e.  ( T  X.  E ) )  ->  ( I `  ( 2nd `  f
) )  e.  E
)
62 opelxpi 5148 . . 3  |-  ( ( `' ( 1st `  f
)  e.  T  /\  ( I `  ( 2nd `  f ) )  e.  E )  ->  <. `' ( 1st `  f
) ,  ( I `
 ( 2nd `  f
) ) >.  e.  ( T  X.  E ) )
6357, 61, 62syl2anc 693 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  f  e.  ( T  X.  E ) )  ->  <. `' ( 1st `  f ) ,  ( I `  ( 2nd `  f ) ) >.  e.  ( T  X.  E ) )
6453oveq2d 6666 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  f  e.  ( T  X.  E ) )  ->  ( <. `' ( 1st `  f
) ,  ( I `
 ( 2nd `  f
) ) >.  .+  f
)  =  ( <. `' ( 1st `  f
) ,  ( I `
 ( 2nd `  f
) ) >.  .+  <. ( 1st `  f ) ,  ( 2nd `  f
) >. ) )
651, 2, 3, 4, 10, 8, 11dvhopvadd 36382 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( `' ( 1st `  f )  e.  T  /\  (
I `  ( 2nd `  f ) )  e.  E )  /\  (
( 1st `  f
)  e.  T  /\  ( 2nd `  f )  e.  E ) )  ->  ( <. `' ( 1st `  f ) ,  ( I `  ( 2nd `  f ) ) >.  .+  <. ( 1st `  f ) ,  ( 2nd `  f
) >. )  =  <. ( `' ( 1st `  f
)  o.  ( 1st `  f ) ) ,  ( ( I `  ( 2nd `  f ) )  .+^  ( 2nd `  f ) ) >.
)
6631, 57, 61, 35, 37, 65syl122anc 1335 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  f  e.  ( T  X.  E ) )  ->  ( <. `' ( 1st `  f
) ,  ( I `
 ( 2nd `  f
) ) >.  .+  <. ( 1st `  f ) ,  ( 2nd `  f
) >. )  =  <. ( `' ( 1st `  f
)  o.  ( 1st `  f ) ) ,  ( ( I `  ( 2nd `  f ) )  .+^  ( 2nd `  f ) ) >.
)
67 f1ococnv1 6165 . . . . . 6  |-  ( ( 1st `  f ) : B -1-1-onto-> B  ->  ( `' ( 1st `  f )  o.  ( 1st `  f
) )  =  (  _I  |`  B )
)
6841, 67syl 17 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  f  e.  ( T  X.  E ) )  ->  ( `' ( 1st `  f )  o.  ( 1st `  f
) )  =  (  _I  |`  B )
)
6923, 11, 24, 58grplinv 17468 . . . . . 6  |-  ( ( D  e.  Grp  /\  ( 2nd `  f )  e.  ( Base `  D
) )  ->  (
( I `  ( 2nd `  f ) ) 
.+^  ( 2nd `  f
) )  =  .0.  )
7045, 47, 69syl2anc 693 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  f  e.  ( T  X.  E ) )  ->  ( (
I `  ( 2nd `  f ) )  .+^  ( 2nd `  f ) )  =  .0.  )
7168, 70opeq12d 4410 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  f  e.  ( T  X.  E ) )  ->  <. ( `' ( 1st `  f
)  o.  ( 1st `  f ) ) ,  ( ( I `  ( 2nd `  f ) )  .+^  ( 2nd `  f ) ) >.  =  <. (  _I  |`  B ) ,  .0.  >. )
7266, 71eqtrd 2656 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  f  e.  ( T  X.  E ) )  ->  ( <. `' ( 1st `  f
) ,  ( I `
 ( 2nd `  f
) ) >.  .+  <. ( 1st `  f ) ,  ( 2nd `  f
) >. )  =  <. (  _I  |`  B ) ,  .0.  >. )
7364, 72eqtrd 2656 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  f  e.  ( T  X.  E ) )  ->  ( <. `' ( 1st `  f
) ,  ( I `
 ( 2nd `  f
) ) >.  .+  f
)  =  <. (  _I  |`  B ) ,  .0.  >. )
747, 9, 13, 14, 30, 55, 63, 73isgrpd 17444 1  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  U  e.  Grp )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   <.cop 4183    _I cid 5023    X. cxp 5112   `'ccnv 5113    |` cres 5116    o. ccom 5118   -->wf 5884   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167   Basecbs 15857   +g cplusg 15941  Scalarcsca 15944   0gc0g 16100   Grpcgrp 17422   invgcminusg 17423   DivRingcdr 18747   HLchlt 34637   LHypclh 35270   LTrncltrn 35387   TEndoctendo 36040   EDRingcedring 36041   DVecHcdvh 36367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-riotaBAD 34239
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-undef 7399  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-0g 16102  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-mgp 18490  df-ur 18502  df-ring 18549  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683  df-drng 18749  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-llines 34784  df-lplanes 34785  df-lvols 34786  df-lines 34787  df-psubsp 34789  df-pmap 34790  df-padd 35082  df-lhyp 35274  df-laut 35275  df-ldil 35390  df-ltrn 35391  df-trl 35446  df-tendo 36043  df-edring 36045  df-dvech 36368
This theorem is referenced by:  dvhlveclem  36397
  Copyright terms: Public domain W3C validator