| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isgrpda | Structured version Visualization version Unicode version | ||
| Description: Properties that determine a group operation. (Contributed by Jeff Madsen, 1-Dec-2009.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| isgrpda.1 |
|
| isgrpda.2 |
|
| isgrpda.3 |
|
| isgrpda.4 |
|
| isgrpda.5 |
|
| isgrpda.6 |
|
| Ref | Expression |
|---|---|
| isgrpda |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isgrpda.2 |
. . 3
| |
| 2 | isgrpda.3 |
. . . 4
| |
| 3 | 2 | ralrimivvva 2972 |
. . 3
|
| 4 | isgrpda.4 |
. . . 4
| |
| 5 | isgrpda.5 |
. . . . . 6
| |
| 6 | isgrpda.6 |
. . . . . . 7
| |
| 7 | oveq1 6657 |
. . . . . . . . 9
| |
| 8 | 7 | eqeq1d 2624 |
. . . . . . . 8
|
| 9 | 8 | cbvrexv 3172 |
. . . . . . 7
|
| 10 | 6, 9 | sylibr 224 |
. . . . . 6
|
| 11 | 5, 10 | jca 554 |
. . . . 5
|
| 12 | 11 | ralrimiva 2966 |
. . . 4
|
| 13 | oveq1 6657 |
. . . . . . . 8
| |
| 14 | 13 | eqeq1d 2624 |
. . . . . . 7
|
| 15 | eqeq2 2633 |
. . . . . . . 8
| |
| 16 | 15 | rexbidv 3052 |
. . . . . . 7
|
| 17 | 14, 16 | anbi12d 747 |
. . . . . 6
|
| 18 | 17 | ralbidv 2986 |
. . . . 5
|
| 19 | 18 | rspcev 3309 |
. . . 4
|
| 20 | 4, 12, 19 | syl2anc 693 |
. . 3
|
| 21 | 4 | adantr 481 |
. . . . . . . . . 10
|
| 22 | simpr 477 |
. . . . . . . . . 10
| |
| 23 | 5 | eqcomd 2628 |
. . . . . . . . . 10
|
| 24 | rspceov 6692 |
. . . . . . . . . 10
| |
| 25 | 21, 22, 23, 24 | syl3anc 1326 |
. . . . . . . . 9
|
| 26 | 25 | ralrimiva 2966 |
. . . . . . . 8
|
| 27 | foov 6808 |
. . . . . . . 8
| |
| 28 | 1, 26, 27 | sylanbrc 698 |
. . . . . . 7
|
| 29 | forn 6118 |
. . . . . . 7
| |
| 30 | 28, 29 | syl 17 |
. . . . . 6
|
| 31 | 30 | sqxpeqd 5141 |
. . . . 5
|
| 32 | 31, 30 | feq23d 6040 |
. . . 4
|
| 33 | 30 | raleqdv 3144 |
. . . . . 6
|
| 34 | 30, 33 | raleqbidv 3152 |
. . . . 5
|
| 35 | 30, 34 | raleqbidv 3152 |
. . . 4
|
| 36 | 30 | rexeqdv 3145 |
. . . . . . 7
|
| 37 | 36 | anbi2d 740 |
. . . . . 6
|
| 38 | 30, 37 | raleqbidv 3152 |
. . . . 5
|
| 39 | 30, 38 | rexeqbidv 3153 |
. . . 4
|
| 40 | 32, 35, 39 | 3anbi123d 1399 |
. . 3
|
| 41 | 1, 3, 20, 40 | mpbir3and 1245 |
. 2
|
| 42 | isgrpda.1 |
. . . . 5
| |
| 43 | xpexg 6960 |
. . . . 5
| |
| 44 | 42, 42, 43 | syl2anc 693 |
. . . 4
|
| 45 | fex 6490 |
. . . 4
| |
| 46 | 1, 44, 45 | syl2anc 693 |
. . 3
|
| 47 | eqid 2622 |
. . . 4
| |
| 48 | 47 | isgrpo 27351 |
. . 3
|
| 49 | 46, 48 | syl 17 |
. 2
|
| 50 | 41, 49 | mpbird 247 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-grpo 27347 |
| This theorem is referenced by: isdrngo2 33757 |
| Copyright terms: Public domain | W3C validator |