Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isgrpda Structured version   Visualization version   Unicode version

Theorem isgrpda 33754
Description: Properties that determine a group operation. (Contributed by Jeff Madsen, 1-Dec-2009.) (New usage is discouraged.)
Hypotheses
Ref Expression
isgrpda.1  |-  ( ph  ->  X  e.  _V )
isgrpda.2  |-  ( ph  ->  G : ( X  X.  X ) --> X )
isgrpda.3  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X  /\  z  e.  X ) )  -> 
( ( x G y ) G z )  =  ( x G ( y G z ) ) )
isgrpda.4  |-  ( ph  ->  U  e.  X )
isgrpda.5  |-  ( (
ph  /\  x  e.  X )  ->  ( U G x )  =  x )
isgrpda.6  |-  ( (
ph  /\  x  e.  X )  ->  E. n  e.  X  ( n G x )  =  U )
Assertion
Ref Expression
isgrpda  |-  ( ph  ->  G  e.  GrpOp )
Distinct variable groups:    ph, x, y, z    n, G, x, y, z    n, X, x, y, z    U, n, x, y, z
Allowed substitution hint:    ph( n)

Proof of Theorem isgrpda
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 isgrpda.2 . . 3  |-  ( ph  ->  G : ( X  X.  X ) --> X )
2 isgrpda.3 . . . 4  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X  /\  z  e.  X ) )  -> 
( ( x G y ) G z )  =  ( x G ( y G z ) ) )
32ralrimivvva 2972 . . 3  |-  ( ph  ->  A. x  e.  X  A. y  e.  X  A. z  e.  X  ( ( x G y ) G z )  =  ( x G ( y G z ) ) )
4 isgrpda.4 . . . 4  |-  ( ph  ->  U  e.  X )
5 isgrpda.5 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  ( U G x )  =  x )
6 isgrpda.6 . . . . . . 7  |-  ( (
ph  /\  x  e.  X )  ->  E. n  e.  X  ( n G x )  =  U )
7 oveq1 6657 . . . . . . . . 9  |-  ( y  =  n  ->  (
y G x )  =  ( n G x ) )
87eqeq1d 2624 . . . . . . . 8  |-  ( y  =  n  ->  (
( y G x )  =  U  <->  ( n G x )  =  U ) )
98cbvrexv 3172 . . . . . . 7  |-  ( E. y  e.  X  ( y G x )  =  U  <->  E. n  e.  X  ( n G x )  =  U )
106, 9sylibr 224 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  E. y  e.  X  ( y G x )  =  U )
115, 10jca 554 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  (
( U G x )  =  x  /\  E. y  e.  X  ( y G x )  =  U ) )
1211ralrimiva 2966 . . . 4  |-  ( ph  ->  A. x  e.  X  ( ( U G x )  =  x  /\  E. y  e.  X  ( y G x )  =  U ) )
13 oveq1 6657 . . . . . . . 8  |-  ( u  =  U  ->  (
u G x )  =  ( U G x ) )
1413eqeq1d 2624 . . . . . . 7  |-  ( u  =  U  ->  (
( u G x )  =  x  <->  ( U G x )  =  x ) )
15 eqeq2 2633 . . . . . . . 8  |-  ( u  =  U  ->  (
( y G x )  =  u  <->  ( y G x )  =  U ) )
1615rexbidv 3052 . . . . . . 7  |-  ( u  =  U  ->  ( E. y  e.  X  ( y G x )  =  u  <->  E. y  e.  X  ( y G x )  =  U ) )
1714, 16anbi12d 747 . . . . . 6  |-  ( u  =  U  ->  (
( ( u G x )  =  x  /\  E. y  e.  X  ( y G x )  =  u )  <->  ( ( U G x )  =  x  /\  E. y  e.  X  ( y G x )  =  U ) ) )
1817ralbidv 2986 . . . . 5  |-  ( u  =  U  ->  ( A. x  e.  X  ( ( u G x )  =  x  /\  E. y  e.  X  ( y G x )  =  u )  <->  A. x  e.  X  ( ( U G x )  =  x  /\  E. y  e.  X  ( y G x )  =  U ) ) )
1918rspcev 3309 . . . 4  |-  ( ( U  e.  X  /\  A. x  e.  X  ( ( U G x )  =  x  /\  E. y  e.  X  ( y G x )  =  U ) )  ->  E. u  e.  X  A. x  e.  X  ( ( u G x )  =  x  /\  E. y  e.  X  ( y G x )  =  u ) )
204, 12, 19syl2anc 693 . . 3  |-  ( ph  ->  E. u  e.  X  A. x  e.  X  ( ( u G x )  =  x  /\  E. y  e.  X  ( y G x )  =  u ) )
214adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  X )  ->  U  e.  X )
22 simpr 477 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  X )  ->  x  e.  X )
235eqcomd 2628 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  X )  ->  x  =  ( U G x ) )
24 rspceov 6692 . . . . . . . . . 10  |-  ( ( U  e.  X  /\  x  e.  X  /\  x  =  ( U G x ) )  ->  E. y  e.  X  E. z  e.  X  x  =  ( y G z ) )
2521, 22, 23, 24syl3anc 1326 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  X )  ->  E. y  e.  X  E. z  e.  X  x  =  ( y G z ) )
2625ralrimiva 2966 . . . . . . . 8  |-  ( ph  ->  A. x  e.  X  E. y  e.  X  E. z  e.  X  x  =  ( y G z ) )
27 foov 6808 . . . . . . . 8  |-  ( G : ( X  X.  X ) -onto-> X  <->  ( G : ( X  X.  X ) --> X  /\  A. x  e.  X  E. y  e.  X  E. z  e.  X  x  =  ( y G z ) ) )
281, 26, 27sylanbrc 698 . . . . . . 7  |-  ( ph  ->  G : ( X  X.  X ) -onto-> X )
29 forn 6118 . . . . . . 7  |-  ( G : ( X  X.  X ) -onto-> X  ->  ran  G  =  X )
3028, 29syl 17 . . . . . 6  |-  ( ph  ->  ran  G  =  X )
3130sqxpeqd 5141 . . . . 5  |-  ( ph  ->  ( ran  G  X.  ran  G )  =  ( X  X.  X ) )
3231, 30feq23d 6040 . . . 4  |-  ( ph  ->  ( G : ( ran  G  X.  ran  G ) --> ran  G  <->  G :
( X  X.  X
) --> X ) )
3330raleqdv 3144 . . . . . 6  |-  ( ph  ->  ( A. z  e. 
ran  G ( ( x G y ) G z )  =  ( x G ( y G z ) )  <->  A. z  e.  X  ( ( x G y ) G z )  =  ( x G ( y G z ) ) ) )
3430, 33raleqbidv 3152 . . . . 5  |-  ( ph  ->  ( A. y  e. 
ran  G A. z  e.  ran  G ( ( x G y ) G z )  =  ( x G ( y G z ) )  <->  A. y  e.  X  A. z  e.  X  ( ( x G y ) G z )  =  ( x G ( y G z ) ) ) )
3530, 34raleqbidv 3152 . . . 4  |-  ( ph  ->  ( A. x  e. 
ran  G A. y  e.  ran  G A. z  e.  ran  G ( ( x G y ) G z )  =  ( x G ( y G z ) )  <->  A. x  e.  X  A. y  e.  X  A. z  e.  X  ( ( x G y ) G z )  =  ( x G ( y G z ) ) ) )
3630rexeqdv 3145 . . . . . . 7  |-  ( ph  ->  ( E. y  e. 
ran  G ( y G x )  =  u  <->  E. y  e.  X  ( y G x )  =  u ) )
3736anbi2d 740 . . . . . 6  |-  ( ph  ->  ( ( ( u G x )  =  x  /\  E. y  e.  ran  G ( y G x )  =  u )  <->  ( (
u G x )  =  x  /\  E. y  e.  X  (
y G x )  =  u ) ) )
3830, 37raleqbidv 3152 . . . . 5  |-  ( ph  ->  ( A. x  e. 
ran  G ( ( u G x )  =  x  /\  E. y  e.  ran  G ( y G x )  =  u )  <->  A. x  e.  X  ( (
u G x )  =  x  /\  E. y  e.  X  (
y G x )  =  u ) ) )
3930, 38rexeqbidv 3153 . . . 4  |-  ( ph  ->  ( E. u  e. 
ran  G A. x  e.  ran  G ( ( u G x )  =  x  /\  E. y  e.  ran  G ( y G x )  =  u )  <->  E. u  e.  X  A. x  e.  X  ( (
u G x )  =  x  /\  E. y  e.  X  (
y G x )  =  u ) ) )
4032, 35, 393anbi123d 1399 . . 3  |-  ( ph  ->  ( ( G :
( ran  G  X.  ran  G ) --> ran  G  /\  A. x  e.  ran  G A. y  e.  ran  G A. z  e.  ran  G ( ( x G y ) G z )  =  ( x G ( y G z ) )  /\  E. u  e.  ran  G A. x  e.  ran  G ( ( u G x )  =  x  /\  E. y  e. 
ran  G ( y G x )  =  u ) )  <->  ( G : ( X  X.  X ) --> X  /\  A. x  e.  X  A. y  e.  X  A. z  e.  X  (
( x G y ) G z )  =  ( x G ( y G z ) )  /\  E. u  e.  X  A. x  e.  X  (
( u G x )  =  x  /\  E. y  e.  X  ( y G x )  =  u ) ) ) )
411, 3, 20, 40mpbir3and 1245 . 2  |-  ( ph  ->  ( G : ( ran  G  X.  ran  G ) --> ran  G  /\  A. x  e.  ran  G A. y  e.  ran  G A. z  e.  ran  G ( ( x G y ) G z )  =  ( x G ( y G z ) )  /\  E. u  e.  ran  G A. x  e.  ran  G ( ( u G x )  =  x  /\  E. y  e. 
ran  G ( y G x )  =  u ) ) )
42 isgrpda.1 . . . . 5  |-  ( ph  ->  X  e.  _V )
43 xpexg 6960 . . . . 5  |-  ( ( X  e.  _V  /\  X  e.  _V )  ->  ( X  X.  X
)  e.  _V )
4442, 42, 43syl2anc 693 . . . 4  |-  ( ph  ->  ( X  X.  X
)  e.  _V )
45 fex 6490 . . . 4  |-  ( ( G : ( X  X.  X ) --> X  /\  ( X  X.  X )  e.  _V )  ->  G  e.  _V )
461, 44, 45syl2anc 693 . . 3  |-  ( ph  ->  G  e.  _V )
47 eqid 2622 . . . 4  |-  ran  G  =  ran  G
4847isgrpo 27351 . . 3  |-  ( G  e.  _V  ->  ( G  e.  GrpOp  <->  ( G : ( ran  G  X.  ran  G ) --> ran 
G  /\  A. x  e.  ran  G A. y  e.  ran  G A. z  e.  ran  G ( ( x G y ) G z )  =  ( x G ( y G z ) )  /\  E. u  e.  ran  G A. x  e.  ran  G ( ( u G x )  =  x  /\  E. y  e.  ran  G ( y G x )  =  u ) ) ) )
4946, 48syl 17 . 2  |-  ( ph  ->  ( G  e.  GrpOp  <->  ( G : ( ran  G  X.  ran  G ) --> ran 
G  /\  A. x  e.  ran  G A. y  e.  ran  G A. z  e.  ran  G ( ( x G y ) G z )  =  ( x G ( y G z ) )  /\  E. u  e.  ran  G A. x  e.  ran  G ( ( u G x )  =  x  /\  E. y  e.  ran  G ( y G x )  =  u ) ) ) )
5041, 49mpbird 247 1  |-  ( ph  ->  G  e.  GrpOp )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200    X. cxp 5112   ran crn 5115   -->wf 5884   -onto->wfo 5886  (class class class)co 6650   GrpOpcgr 27343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-grpo 27347
This theorem is referenced by:  isdrngo2  33757
  Copyright terms: Public domain W3C validator