Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isdrngo1 Structured version   Visualization version   Unicode version

Theorem isdrngo1 33755
Description: The predicate "is a division ring". (Contributed by Jeff Madsen, 8-Jun-2010.)
Hypotheses
Ref Expression
isdivrng1.1  |-  G  =  ( 1st `  R
)
isdivrng1.2  |-  H  =  ( 2nd `  R
)
isdivrng1.3  |-  Z  =  (GId `  G )
isdivrng1.4  |-  X  =  ran  G
Assertion
Ref Expression
isdrngo1  |-  ( R  e.  DivRingOps 
<->  ( R  e.  RingOps  /\  ( H  |`  ( ( X  \  { Z } )  X.  ( X  \  { Z }
) ) )  e. 
GrpOp ) )

Proof of Theorem isdrngo1
Dummy variables  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-drngo 33748 . . . 4  |-  DivRingOps  =  { <. g ,  h >.  |  ( <. g ,  h >.  e.  RingOps  /\  ( h  |`  ( ( ran  g  \  { (GId `  g
) } )  X.  ( ran  g  \  { (GId `  g ) } ) ) )  e.  GrpOp ) }
21relopabi 5245 . . 3  |-  Rel  DivRingOps
3 1st2nd 7214 . . 3  |-  ( ( Rel  DivRingOps  /\  R  e.  DivRingOps )  ->  R  =  <. ( 1st `  R
) ,  ( 2nd `  R ) >. )
42, 3mpan 706 . 2  |-  ( R  e.  DivRingOps  ->  R  =  <. ( 1st `  R ) ,  ( 2nd `  R
) >. )
5 relrngo 33695 . . . 4  |-  Rel  RingOps
6 1st2nd 7214 . . . 4  |-  ( ( Rel  RingOps  /\  R  e.  RingOps )  ->  R  =  <. ( 1st `  R ) ,  ( 2nd `  R
) >. )
75, 6mpan 706 . . 3  |-  ( R  e.  RingOps  ->  R  =  <. ( 1st `  R ) ,  ( 2nd `  R
) >. )
87adantr 481 . 2  |-  ( ( R  e.  RingOps  /\  ( H  |`  ( ( X 
\  { Z }
)  X.  ( X 
\  { Z }
) ) )  e. 
GrpOp )  ->  R  = 
<. ( 1st `  R
) ,  ( 2nd `  R ) >. )
9 isdivrng1.1 . . . . 5  |-  G  =  ( 1st `  R
)
10 isdivrng1.2 . . . . 5  |-  H  =  ( 2nd `  R
)
119, 10opeq12i 4407 . . . 4  |-  <. G ,  H >.  =  <. ( 1st `  R ) ,  ( 2nd `  R
) >.
1211eqeq2i 2634 . . 3  |-  ( R  =  <. G ,  H >.  <-> 
R  =  <. ( 1st `  R ) ,  ( 2nd `  R
) >. )
13 fvex 6201 . . . . . . 7  |-  ( 2nd `  R )  e.  _V
1410, 13eqeltri 2697 . . . . . 6  |-  H  e. 
_V
15 isdivrngo 33749 . . . . . 6  |-  ( H  e.  _V  ->  ( <. G ,  H >.  e.  DivRingOps  <->  (
<. G ,  H >.  e.  RingOps 
/\  ( H  |`  ( ( ran  G  \  { (GId `  G
) } )  X.  ( ran  G  \  { (GId `  G ) } ) ) )  e.  GrpOp ) ) )
1614, 15ax-mp 5 . . . . 5  |-  ( <. G ,  H >.  e.  DivRingOps  <->  (
<. G ,  H >.  e.  RingOps 
/\  ( H  |`  ( ( ran  G  \  { (GId `  G
) } )  X.  ( ran  G  \  { (GId `  G ) } ) ) )  e.  GrpOp ) )
17 isdivrng1.4 . . . . . . . . . 10  |-  X  =  ran  G
18 isdivrng1.3 . . . . . . . . . . 11  |-  Z  =  (GId `  G )
1918sneqi 4188 . . . . . . . . . 10  |-  { Z }  =  { (GId `  G ) }
2017, 19difeq12i 3726 . . . . . . . . 9  |-  ( X 
\  { Z }
)  =  ( ran 
G  \  { (GId `  G ) } )
2120, 20xpeq12i 5137 . . . . . . . 8  |-  ( ( X  \  { Z } )  X.  ( X  \  { Z }
) )  =  ( ( ran  G  \  { (GId `  G ) } )  X.  ( ran  G  \  { (GId
`  G ) } ) )
2221reseq2i 5393 . . . . . . 7  |-  ( H  |`  ( ( X  \  { Z } )  X.  ( X  \  { Z } ) ) )  =  ( H  |`  ( ( ran  G  \  { (GId `  G
) } )  X.  ( ran  G  \  { (GId `  G ) } ) ) )
2322eleq1i 2692 . . . . . 6  |-  ( ( H  |`  ( ( X  \  { Z }
)  X.  ( X 
\  { Z }
) ) )  e. 
GrpOp 
<->  ( H  |`  (
( ran  G  \  {
(GId `  G ) } )  X.  ( ran  G  \  { (GId
`  G ) } ) ) )  e. 
GrpOp )
2423anbi2i 730 . . . . 5  |-  ( (
<. G ,  H >.  e.  RingOps 
/\  ( H  |`  ( ( X  \  { Z } )  X.  ( X  \  { Z } ) ) )  e.  GrpOp )  <->  ( <. G ,  H >.  e.  RingOps  /\  ( H  |`  ( ( ran  G  \  {
(GId `  G ) } )  X.  ( ran  G  \  { (GId
`  G ) } ) ) )  e. 
GrpOp ) )
2516, 24bitr4i 267 . . . 4  |-  ( <. G ,  H >.  e.  DivRingOps  <->  (
<. G ,  H >.  e.  RingOps 
/\  ( H  |`  ( ( X  \  { Z } )  X.  ( X  \  { Z } ) ) )  e.  GrpOp ) )
26 eleq1 2689 . . . . 5  |-  ( R  =  <. G ,  H >.  ->  ( R  e.  DivRingOps  <->  <. G ,  H >.  e.  DivRingOps
) )
27 eleq1 2689 . . . . . 6  |-  ( R  =  <. G ,  H >.  ->  ( R  e.  RingOps  <->  <. G ,  H >.  e.  RingOps ) )
2827anbi1d 741 . . . . 5  |-  ( R  =  <. G ,  H >.  ->  ( ( R  e.  RingOps  /\  ( H  |`  ( ( X  \  { Z } )  X.  ( X  \  { Z } ) ) )  e.  GrpOp )  <->  ( <. G ,  H >.  e.  RingOps  /\  ( H  |`  ( ( X  \  { Z } )  X.  ( X  \  { Z }
) ) )  e. 
GrpOp ) ) )
2926, 28bibi12d 335 . . . 4  |-  ( R  =  <. G ,  H >.  ->  ( ( R  e.  DivRingOps 
<->  ( R  e.  RingOps  /\  ( H  |`  ( ( X  \  { Z } )  X.  ( X  \  { Z }
) ) )  e. 
GrpOp ) )  <->  ( <. G ,  H >.  e.  DivRingOps  <->  ( <. G ,  H >.  e.  RingOps  /\  ( H  |`  ( ( X 
\  { Z }
)  X.  ( X 
\  { Z }
) ) )  e. 
GrpOp ) ) ) )
3025, 29mpbiri 248 . . 3  |-  ( R  =  <. G ,  H >.  ->  ( R  e.  DivRingOps  <->  ( R  e.  RingOps  /\  ( H  |`  ( ( X 
\  { Z }
)  X.  ( X 
\  { Z }
) ) )  e. 
GrpOp ) ) )
3112, 30sylbir 225 . 2  |-  ( R  =  <. ( 1st `  R
) ,  ( 2nd `  R ) >.  ->  ( R  e.  DivRingOps 
<->  ( R  e.  RingOps  /\  ( H  |`  ( ( X  \  { Z } )  X.  ( X  \  { Z }
) ) )  e. 
GrpOp ) ) )
324, 8, 31pm5.21nii 368 1  |-  ( R  e.  DivRingOps 
<->  ( R  e.  RingOps  /\  ( H  |`  ( ( X  \  { Z } )  X.  ( X  \  { Z }
) ) )  e. 
GrpOp ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    \ cdif 3571   {csn 4177   <.cop 4183    X. cxp 5112   ran crn 5115    |` cres 5116   Rel wrel 5119   ` cfv 5888   1stc1st 7166   2ndc2nd 7167   GrpOpcgr 27343  GIdcgi 27344   RingOpscrngo 33693   DivRingOpscdrng 33747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-1st 7168  df-2nd 7169  df-rngo 33694  df-drngo 33748
This theorem is referenced by:  divrngcl  33756  isdrngo2  33757  divrngpr  33852
  Copyright terms: Public domain W3C validator