MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isgrpoi Structured version   Visualization version   Unicode version

Theorem isgrpoi 27352
Description: Properties that determine a group operation. Read  N as  N ( x ). (Contributed by NM, 4-Nov-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
isgrpoi.1  |-  X  e. 
_V
isgrpoi.2  |-  G :
( X  X.  X
) --> X
isgrpoi.3  |-  ( ( x  e.  X  /\  y  e.  X  /\  z  e.  X )  ->  ( ( x G y ) G z )  =  ( x G ( y G z ) ) )
isgrpoi.4  |-  U  e.  X
isgrpoi.5  |-  ( x  e.  X  ->  ( U G x )  =  x )
isgrpoi.6  |-  ( x  e.  X  ->  N  e.  X )
isgrpoi.7  |-  ( x  e.  X  ->  ( N G x )  =  U )
Assertion
Ref Expression
isgrpoi  |-  G  e. 
GrpOp
Distinct variable groups:    x, y,
z, G    x, U, y, z    x, X, y, z    y, N
Allowed substitution hints:    N( x, z)

Proof of Theorem isgrpoi
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 isgrpoi.2 . 2  |-  G :
( X  X.  X
) --> X
2 isgrpoi.3 . . 3  |-  ( ( x  e.  X  /\  y  e.  X  /\  z  e.  X )  ->  ( ( x G y ) G z )  =  ( x G ( y G z ) ) )
32rgen3 2976 . 2  |-  A. x  e.  X  A. y  e.  X  A. z  e.  X  ( (
x G y ) G z )  =  ( x G ( y G z ) )
4 isgrpoi.4 . . 3  |-  U  e.  X
5 isgrpoi.5 . . . . 5  |-  ( x  e.  X  ->  ( U G x )  =  x )
6 isgrpoi.6 . . . . . 6  |-  ( x  e.  X  ->  N  e.  X )
7 isgrpoi.7 . . . . . 6  |-  ( x  e.  X  ->  ( N G x )  =  U )
8 oveq1 6657 . . . . . . . 8  |-  ( y  =  N  ->  (
y G x )  =  ( N G x ) )
98eqeq1d 2624 . . . . . . 7  |-  ( y  =  N  ->  (
( y G x )  =  U  <->  ( N G x )  =  U ) )
109rspcev 3309 . . . . . 6  |-  ( ( N  e.  X  /\  ( N G x )  =  U )  ->  E. y  e.  X  ( y G x )  =  U )
116, 7, 10syl2anc 693 . . . . 5  |-  ( x  e.  X  ->  E. y  e.  X  ( y G x )  =  U )
125, 11jca 554 . . . 4  |-  ( x  e.  X  ->  (
( U G x )  =  x  /\  E. y  e.  X  ( y G x )  =  U ) )
1312rgen 2922 . . 3  |-  A. x  e.  X  ( ( U G x )  =  x  /\  E. y  e.  X  ( y G x )  =  U )
14 oveq1 6657 . . . . . . 7  |-  ( u  =  U  ->  (
u G x )  =  ( U G x ) )
1514eqeq1d 2624 . . . . . 6  |-  ( u  =  U  ->  (
( u G x )  =  x  <->  ( U G x )  =  x ) )
16 eqeq2 2633 . . . . . . 7  |-  ( u  =  U  ->  (
( y G x )  =  u  <->  ( y G x )  =  U ) )
1716rexbidv 3052 . . . . . 6  |-  ( u  =  U  ->  ( E. y  e.  X  ( y G x )  =  u  <->  E. y  e.  X  ( y G x )  =  U ) )
1815, 17anbi12d 747 . . . . 5  |-  ( u  =  U  ->  (
( ( u G x )  =  x  /\  E. y  e.  X  ( y G x )  =  u )  <->  ( ( U G x )  =  x  /\  E. y  e.  X  ( y G x )  =  U ) ) )
1918ralbidv 2986 . . . 4  |-  ( u  =  U  ->  ( A. x  e.  X  ( ( u G x )  =  x  /\  E. y  e.  X  ( y G x )  =  u )  <->  A. x  e.  X  ( ( U G x )  =  x  /\  E. y  e.  X  ( y G x )  =  U ) ) )
2019rspcev 3309 . . 3  |-  ( ( U  e.  X  /\  A. x  e.  X  ( ( U G x )  =  x  /\  E. y  e.  X  ( y G x )  =  U ) )  ->  E. u  e.  X  A. x  e.  X  ( ( u G x )  =  x  /\  E. y  e.  X  ( y G x )  =  u ) )
214, 13, 20mp2an 708 . 2  |-  E. u  e.  X  A. x  e.  X  ( (
u G x )  =  x  /\  E. y  e.  X  (
y G x )  =  u )
22 isgrpoi.1 . . . . 5  |-  X  e. 
_V
2322, 22xpex 6962 . . . 4  |-  ( X  X.  X )  e. 
_V
24 fex 6490 . . . 4  |-  ( ( G : ( X  X.  X ) --> X  /\  ( X  X.  X )  e.  _V )  ->  G  e.  _V )
251, 23, 24mp2an 708 . . 3  |-  G  e. 
_V
265eqcomd 2628 . . . . . . . . 9  |-  ( x  e.  X  ->  x  =  ( U G x ) )
27 rspceov 6692 . . . . . . . . . 10  |-  ( ( U  e.  X  /\  x  e.  X  /\  x  =  ( U G x ) )  ->  E. y  e.  X  E. z  e.  X  x  =  ( y G z ) )
284, 27mp3an1 1411 . . . . . . . . 9  |-  ( ( x  e.  X  /\  x  =  ( U G x ) )  ->  E. y  e.  X  E. z  e.  X  x  =  ( y G z ) )
2926, 28mpdan 702 . . . . . . . 8  |-  ( x  e.  X  ->  E. y  e.  X  E. z  e.  X  x  =  ( y G z ) )
3029rgen 2922 . . . . . . 7  |-  A. x  e.  X  E. y  e.  X  E. z  e.  X  x  =  ( y G z )
31 foov 6808 . . . . . . 7  |-  ( G : ( X  X.  X ) -onto-> X  <->  ( G : ( X  X.  X ) --> X  /\  A. x  e.  X  E. y  e.  X  E. z  e.  X  x  =  ( y G z ) ) )
321, 30, 31mpbir2an 955 . . . . . 6  |-  G :
( X  X.  X
) -onto-> X
33 forn 6118 . . . . . 6  |-  ( G : ( X  X.  X ) -onto-> X  ->  ran  G  =  X )
3432, 33ax-mp 5 . . . . 5  |-  ran  G  =  X
3534eqcomi 2631 . . . 4  |-  X  =  ran  G
3635isgrpo 27351 . . 3  |-  ( G  e.  _V  ->  ( G  e.  GrpOp  <->  ( G : ( X  X.  X ) --> X  /\  A. x  e.  X  A. y  e.  X  A. z  e.  X  (
( x G y ) G z )  =  ( x G ( y G z ) )  /\  E. u  e.  X  A. x  e.  X  (
( u G x )  =  x  /\  E. y  e.  X  ( y G x )  =  u ) ) ) )
3725, 36ax-mp 5 . 2  |-  ( G  e.  GrpOp 
<->  ( G : ( X  X.  X ) --> X  /\  A. x  e.  X  A. y  e.  X  A. z  e.  X  ( (
x G y ) G z )  =  ( x G ( y G z ) )  /\  E. u  e.  X  A. x  e.  X  ( (
u G x )  =  x  /\  E. y  e.  X  (
y G x )  =  u ) ) )
381, 3, 21, 37mpbir3an 1244 1  |-  G  e. 
GrpOp
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200    X. cxp 5112   ran crn 5115   -->wf 5884   -onto->wfo 5886  (class class class)co 6650   GrpOpcgr 27343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-grpo 27347
This theorem is referenced by:  cnaddabloOLD  27436  hilablo  28017  hhssabloilem  28118  grposnOLD  33681
  Copyright terms: Public domain W3C validator