MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islmhm Structured version   Visualization version   Unicode version

Theorem islmhm 19027
Description: Property of being a homomorphism of left modules. (Contributed by Stefan O'Rear, 1-Jan-2015.) (Proof shortened by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
islmhm.k  |-  K  =  (Scalar `  S )
islmhm.l  |-  L  =  (Scalar `  T )
islmhm.b  |-  B  =  ( Base `  K
)
islmhm.e  |-  E  =  ( Base `  S
)
islmhm.m  |-  .x.  =  ( .s `  S )
islmhm.n  |-  .X.  =  ( .s `  T )
Assertion
Ref Expression
islmhm  |-  ( F  e.  ( S LMHom  T
)  <->  ( ( S  e.  LMod  /\  T  e. 
LMod )  /\  ( F  e.  ( S  GrpHom  T )  /\  L  =  K  /\  A. x  e.  B  A. y  e.  E  ( F `  ( x  .x.  y
) )  =  ( x  .X.  ( F `  y ) ) ) ) )
Distinct variable groups:    x, B    y, E    x, y, S   
x, F, y    x, T, y
Allowed substitution hints:    B( y)    .x. ( x, y)   
.X. ( x, y)    E( x)    K( x, y)    L( x, y)

Proof of Theorem islmhm
Dummy variables  f 
s  t  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-lmhm 19022 . . 3  |- LMHom  =  ( s  e.  LMod ,  t  e.  LMod  |->  { f  e.  ( s  GrpHom  t )  |  [. (Scalar `  s )  /  w ]. ( (Scalar `  t
)  =  w  /\  A. x  e.  ( Base `  w ) A. y  e.  ( Base `  s
) ( f `  ( x ( .s
`  s ) y ) )  =  ( x ( .s `  t ) ( f `
 y ) ) ) } )
21elmpt2cl 6876 . 2  |-  ( F  e.  ( S LMHom  T
)  ->  ( S  e.  LMod  /\  T  e.  LMod ) )
3 oveq12 6659 . . . . . 6  |-  ( ( s  =  S  /\  t  =  T )  ->  ( s  GrpHom  t )  =  ( S  GrpHom  T ) )
4 fvexd 6203 . . . . . . 7  |-  ( ( s  =  S  /\  t  =  T )  ->  (Scalar `  s )  e.  _V )
5 simplr 792 . . . . . . . . . . 11  |-  ( ( ( s  =  S  /\  t  =  T )  /\  w  =  (Scalar `  s )
)  ->  t  =  T )
65fveq2d 6195 . . . . . . . . . 10  |-  ( ( ( s  =  S  /\  t  =  T )  /\  w  =  (Scalar `  s )
)  ->  (Scalar `  t
)  =  (Scalar `  T ) )
7 islmhm.l . . . . . . . . . 10  |-  L  =  (Scalar `  T )
86, 7syl6eqr 2674 . . . . . . . . 9  |-  ( ( ( s  =  S  /\  t  =  T )  /\  w  =  (Scalar `  s )
)  ->  (Scalar `  t
)  =  L )
9 simpr 477 . . . . . . . . . . 11  |-  ( ( ( s  =  S  /\  t  =  T )  /\  w  =  (Scalar `  s )
)  ->  w  =  (Scalar `  s ) )
10 simpll 790 . . . . . . . . . . . 12  |-  ( ( ( s  =  S  /\  t  =  T )  /\  w  =  (Scalar `  s )
)  ->  s  =  S )
1110fveq2d 6195 . . . . . . . . . . 11  |-  ( ( ( s  =  S  /\  t  =  T )  /\  w  =  (Scalar `  s )
)  ->  (Scalar `  s
)  =  (Scalar `  S ) )
129, 11eqtrd 2656 . . . . . . . . . 10  |-  ( ( ( s  =  S  /\  t  =  T )  /\  w  =  (Scalar `  s )
)  ->  w  =  (Scalar `  S ) )
13 islmhm.k . . . . . . . . . 10  |-  K  =  (Scalar `  S )
1412, 13syl6eqr 2674 . . . . . . . . 9  |-  ( ( ( s  =  S  /\  t  =  T )  /\  w  =  (Scalar `  s )
)  ->  w  =  K )
158, 14eqeq12d 2637 . . . . . . . 8  |-  ( ( ( s  =  S  /\  t  =  T )  /\  w  =  (Scalar `  s )
)  ->  ( (Scalar `  t )  =  w  <-> 
L  =  K ) )
1614fveq2d 6195 . . . . . . . . . 10  |-  ( ( ( s  =  S  /\  t  =  T )  /\  w  =  (Scalar `  s )
)  ->  ( Base `  w )  =  (
Base `  K )
)
17 islmhm.b . . . . . . . . . 10  |-  B  =  ( Base `  K
)
1816, 17syl6eqr 2674 . . . . . . . . 9  |-  ( ( ( s  =  S  /\  t  =  T )  /\  w  =  (Scalar `  s )
)  ->  ( Base `  w )  =  B )
1910fveq2d 6195 . . . . . . . . . . 11  |-  ( ( ( s  =  S  /\  t  =  T )  /\  w  =  (Scalar `  s )
)  ->  ( Base `  s )  =  (
Base `  S )
)
20 islmhm.e . . . . . . . . . . 11  |-  E  =  ( Base `  S
)
2119, 20syl6eqr 2674 . . . . . . . . . 10  |-  ( ( ( s  =  S  /\  t  =  T )  /\  w  =  (Scalar `  s )
)  ->  ( Base `  s )  =  E )
2210fveq2d 6195 . . . . . . . . . . . . . 14  |-  ( ( ( s  =  S  /\  t  =  T )  /\  w  =  (Scalar `  s )
)  ->  ( .s `  s )  =  ( .s `  S ) )
23 islmhm.m . . . . . . . . . . . . . 14  |-  .x.  =  ( .s `  S )
2422, 23syl6eqr 2674 . . . . . . . . . . . . 13  |-  ( ( ( s  =  S  /\  t  =  T )  /\  w  =  (Scalar `  s )
)  ->  ( .s `  s )  =  .x.  )
2524oveqd 6667 . . . . . . . . . . . 12  |-  ( ( ( s  =  S  /\  t  =  T )  /\  w  =  (Scalar `  s )
)  ->  ( x
( .s `  s
) y )  =  ( x  .x.  y
) )
2625fveq2d 6195 . . . . . . . . . . 11  |-  ( ( ( s  =  S  /\  t  =  T )  /\  w  =  (Scalar `  s )
)  ->  ( f `  ( x ( .s
`  s ) y ) )  =  ( f `  ( x 
.x.  y ) ) )
275fveq2d 6195 . . . . . . . . . . . . 13  |-  ( ( ( s  =  S  /\  t  =  T )  /\  w  =  (Scalar `  s )
)  ->  ( .s `  t )  =  ( .s `  T ) )
28 islmhm.n . . . . . . . . . . . . 13  |-  .X.  =  ( .s `  T )
2927, 28syl6eqr 2674 . . . . . . . . . . . 12  |-  ( ( ( s  =  S  /\  t  =  T )  /\  w  =  (Scalar `  s )
)  ->  ( .s `  t )  =  .X.  )
3029oveqd 6667 . . . . . . . . . . 11  |-  ( ( ( s  =  S  /\  t  =  T )  /\  w  =  (Scalar `  s )
)  ->  ( x
( .s `  t
) ( f `  y ) )  =  ( x  .X.  (
f `  y )
) )
3126, 30eqeq12d 2637 . . . . . . . . . 10  |-  ( ( ( s  =  S  /\  t  =  T )  /\  w  =  (Scalar `  s )
)  ->  ( (
f `  ( x
( .s `  s
) y ) )  =  ( x ( .s `  t ) ( f `  y
) )  <->  ( f `  ( x  .x.  y
) )  =  ( x  .X.  ( f `  y ) ) ) )
3221, 31raleqbidv 3152 . . . . . . . . 9  |-  ( ( ( s  =  S  /\  t  =  T )  /\  w  =  (Scalar `  s )
)  ->  ( A. y  e.  ( Base `  s ) ( f `
 ( x ( .s `  s ) y ) )  =  ( x ( .s
`  t ) ( f `  y ) )  <->  A. y  e.  E  ( f `  (
x  .x.  y )
)  =  ( x 
.X.  ( f `  y ) ) ) )
3318, 32raleqbidv 3152 . . . . . . . 8  |-  ( ( ( s  =  S  /\  t  =  T )  /\  w  =  (Scalar `  s )
)  ->  ( A. x  e.  ( Base `  w ) A. y  e.  ( Base `  s
) ( f `  ( x ( .s
`  s ) y ) )  =  ( x ( .s `  t ) ( f `
 y ) )  <->  A. x  e.  B  A. y  e.  E  ( f `  (
x  .x.  y )
)  =  ( x 
.X.  ( f `  y ) ) ) )
3415, 33anbi12d 747 . . . . . . 7  |-  ( ( ( s  =  S  /\  t  =  T )  /\  w  =  (Scalar `  s )
)  ->  ( (
(Scalar `  t )  =  w  /\  A. x  e.  ( Base `  w
) A. y  e.  ( Base `  s
) ( f `  ( x ( .s
`  s ) y ) )  =  ( x ( .s `  t ) ( f `
 y ) ) )  <->  ( L  =  K  /\  A. x  e.  B  A. y  e.  E  ( f `  ( x  .x.  y
) )  =  ( x  .X.  ( f `  y ) ) ) ) )
354, 34sbcied 3472 . . . . . 6  |-  ( ( s  =  S  /\  t  =  T )  ->  ( [. (Scalar `  s )  /  w ]. ( (Scalar `  t
)  =  w  /\  A. x  e.  ( Base `  w ) A. y  e.  ( Base `  s
) ( f `  ( x ( .s
`  s ) y ) )  =  ( x ( .s `  t ) ( f `
 y ) ) )  <->  ( L  =  K  /\  A. x  e.  B  A. y  e.  E  ( f `  ( x  .x.  y
) )  =  ( x  .X.  ( f `  y ) ) ) ) )
363, 35rabeqbidv 3195 . . . . 5  |-  ( ( s  =  S  /\  t  =  T )  ->  { f  e.  ( s  GrpHom  t )  | 
[. (Scalar `  s )  /  w ]. ( (Scalar `  t )  =  w  /\  A. x  e.  ( Base `  w
) A. y  e.  ( Base `  s
) ( f `  ( x ( .s
`  s ) y ) )  =  ( x ( .s `  t ) ( f `
 y ) ) ) }  =  {
f  e.  ( S 
GrpHom  T )  |  ( L  =  K  /\  A. x  e.  B  A. y  e.  E  (
f `  ( x  .x.  y ) )  =  ( x  .X.  (
f `  y )
) ) } )
37 ovex 6678 . . . . . 6  |-  ( S 
GrpHom  T )  e.  _V
3837rabex 4813 . . . . 5  |-  { f  e.  ( S  GrpHom  T )  |  ( L  =  K  /\  A. x  e.  B  A. y  e.  E  (
f `  ( x  .x.  y ) )  =  ( x  .X.  (
f `  y )
) ) }  e.  _V
3936, 1, 38ovmpt2a 6791 . . . 4  |-  ( ( S  e.  LMod  /\  T  e.  LMod )  ->  ( S LMHom  T )  =  {
f  e.  ( S 
GrpHom  T )  |  ( L  =  K  /\  A. x  e.  B  A. y  e.  E  (
f `  ( x  .x.  y ) )  =  ( x  .X.  (
f `  y )
) ) } )
4039eleq2d 2687 . . 3  |-  ( ( S  e.  LMod  /\  T  e.  LMod )  ->  ( F  e.  ( S LMHom  T )  <->  F  e.  { f  e.  ( S  GrpHom  T )  |  ( L  =  K  /\  A. x  e.  B  A. y  e.  E  (
f `  ( x  .x.  y ) )  =  ( x  .X.  (
f `  y )
) ) } ) )
41 fveq1 6190 . . . . . . . 8  |-  ( f  =  F  ->  (
f `  ( x  .x.  y ) )  =  ( F `  (
x  .x.  y )
) )
42 fveq1 6190 . . . . . . . . 9  |-  ( f  =  F  ->  (
f `  y )  =  ( F `  y ) )
4342oveq2d 6666 . . . . . . . 8  |-  ( f  =  F  ->  (
x  .X.  ( f `  y ) )  =  ( x  .X.  ( F `  y )
) )
4441, 43eqeq12d 2637 . . . . . . 7  |-  ( f  =  F  ->  (
( f `  (
x  .x.  y )
)  =  ( x 
.X.  ( f `  y ) )  <->  ( F `  ( x  .x.  y
) )  =  ( x  .X.  ( F `  y ) ) ) )
45442ralbidv 2989 . . . . . 6  |-  ( f  =  F  ->  ( A. x  e.  B  A. y  e.  E  ( f `  (
x  .x.  y )
)  =  ( x 
.X.  ( f `  y ) )  <->  A. x  e.  B  A. y  e.  E  ( F `  ( x  .x.  y
) )  =  ( x  .X.  ( F `  y ) ) ) )
4645anbi2d 740 . . . . 5  |-  ( f  =  F  ->  (
( L  =  K  /\  A. x  e.  B  A. y  e.  E  ( f `  ( x  .x.  y ) )  =  ( x 
.X.  ( f `  y ) ) )  <-> 
( L  =  K  /\  A. x  e.  B  A. y  e.  E  ( F `  ( x  .x.  y ) )  =  ( x 
.X.  ( F `  y ) ) ) ) )
4746elrab 3363 . . . 4  |-  ( F  e.  { f  e.  ( S  GrpHom  T )  |  ( L  =  K  /\  A. x  e.  B  A. y  e.  E  ( f `  ( x  .x.  y
) )  =  ( x  .X.  ( f `  y ) ) ) }  <->  ( F  e.  ( S  GrpHom  T )  /\  ( L  =  K  /\  A. x  e.  B  A. y  e.  E  ( F `  ( x  .x.  y
) )  =  ( x  .X.  ( F `  y ) ) ) ) )
48 3anass 1042 . . . 4  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  L  =  K  /\  A. x  e.  B  A. y  e.  E  ( F `  ( x  .x.  y
) )  =  ( x  .X.  ( F `  y ) ) )  <-> 
( F  e.  ( S  GrpHom  T )  /\  ( L  =  K  /\  A. x  e.  B  A. y  e.  E  ( F `  ( x 
.x.  y ) )  =  ( x  .X.  ( F `  y ) ) ) ) )
4947, 48bitr4i 267 . . 3  |-  ( F  e.  { f  e.  ( S  GrpHom  T )  |  ( L  =  K  /\  A. x  e.  B  A. y  e.  E  ( f `  ( x  .x.  y
) )  =  ( x  .X.  ( f `  y ) ) ) }  <->  ( F  e.  ( S  GrpHom  T )  /\  L  =  K  /\  A. x  e.  B  A. y  e.  E  ( F `  ( x  .x.  y ) )  =  ( x 
.X.  ( F `  y ) ) ) )
5040, 49syl6bb 276 . 2  |-  ( ( S  e.  LMod  /\  T  e.  LMod )  ->  ( F  e.  ( S LMHom  T )  <->  ( F  e.  ( S  GrpHom  T )  /\  L  =  K  /\  A. x  e.  B  A. y  e.  E  ( F `  ( x  .x.  y ) )  =  ( x 
.X.  ( F `  y ) ) ) ) )
512, 50biadan2 674 1  |-  ( F  e.  ( S LMHom  T
)  <->  ( ( S  e.  LMod  /\  T  e. 
LMod )  /\  ( F  e.  ( S  GrpHom  T )  /\  L  =  K  /\  A. x  e.  B  A. y  e.  E  ( F `  ( x  .x.  y
) )  =  ( x  .X.  ( F `  y ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916   _Vcvv 3200   [.wsbc 3435   ` cfv 5888  (class class class)co 6650   Basecbs 15857  Scalarcsca 15944   .scvsca 15945    GrpHom cghm 17657   LModclmod 18863   LMHom clmhm 19019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-lmhm 19022
This theorem is referenced by:  islmhm3  19028  lmhmlem  19029  lmhmlin  19035  islmhmd  19039  reslmhm  19052  lmhmpropd  19073
  Copyright terms: Public domain W3C validator