MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reslmhm Structured version   Visualization version   Unicode version

Theorem reslmhm 19052
Description: Restriction of a homomorphism to a subspace. (Contributed by Stefan O'Rear, 1-Jan-2015.)
Hypotheses
Ref Expression
reslmhm.u  |-  U  =  ( LSubSp `  S )
reslmhm.r  |-  R  =  ( Ss  X )
Assertion
Ref Expression
reslmhm  |-  ( ( F  e.  ( S LMHom 
T )  /\  X  e.  U )  ->  ( F  |`  X )  e.  ( R LMHom  T ) )

Proof of Theorem reslmhm
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmhmlmod1 19033 . . . 4  |-  ( F  e.  ( S LMHom  T
)  ->  S  e.  LMod )
2 reslmhm.r . . . . 5  |-  R  =  ( Ss  X )
3 reslmhm.u . . . . 5  |-  U  =  ( LSubSp `  S )
42, 3lsslmod 18960 . . . 4  |-  ( ( S  e.  LMod  /\  X  e.  U )  ->  R  e.  LMod )
51, 4sylan 488 . . 3  |-  ( ( F  e.  ( S LMHom 
T )  /\  X  e.  U )  ->  R  e.  LMod )
6 lmhmlmod2 19032 . . . 4  |-  ( F  e.  ( S LMHom  T
)  ->  T  e.  LMod )
76adantr 481 . . 3  |-  ( ( F  e.  ( S LMHom 
T )  /\  X  e.  U )  ->  T  e.  LMod )
85, 7jca 554 . 2  |-  ( ( F  e.  ( S LMHom 
T )  /\  X  e.  U )  ->  ( R  e.  LMod  /\  T  e.  LMod ) )
9 lmghm 19031 . . . . 5  |-  ( F  e.  ( S LMHom  T
)  ->  F  e.  ( S  GrpHom  T ) )
109adantr 481 . . . 4  |-  ( ( F  e.  ( S LMHom 
T )  /\  X  e.  U )  ->  F  e.  ( S  GrpHom  T ) )
113lsssubg 18957 . . . . 5  |-  ( ( S  e.  LMod  /\  X  e.  U )  ->  X  e.  (SubGrp `  S )
)
121, 11sylan 488 . . . 4  |-  ( ( F  e.  ( S LMHom 
T )  /\  X  e.  U )  ->  X  e.  (SubGrp `  S )
)
132resghm 17676 . . . 4  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  X  e.  (SubGrp `  S )
)  ->  ( F  |`  X )  e.  ( R  GrpHom  T ) )
1410, 12, 13syl2anc 693 . . 3  |-  ( ( F  e.  ( S LMHom 
T )  /\  X  e.  U )  ->  ( F  |`  X )  e.  ( R  GrpHom  T ) )
15 eqid 2622 . . . . 5  |-  (Scalar `  S )  =  (Scalar `  S )
16 eqid 2622 . . . . 5  |-  (Scalar `  T )  =  (Scalar `  T )
1715, 16lmhmsca 19030 . . . 4  |-  ( F  e.  ( S LMHom  T
)  ->  (Scalar `  T
)  =  (Scalar `  S ) )
182, 15resssca 16031 . . . 4  |-  ( X  e.  U  ->  (Scalar `  S )  =  (Scalar `  R ) )
1917, 18sylan9eq 2676 . . 3  |-  ( ( F  e.  ( S LMHom 
T )  /\  X  e.  U )  ->  (Scalar `  T )  =  (Scalar `  R ) )
20 simpll 790 . . . . . . 7  |-  ( ( ( F  e.  ( S LMHom  T )  /\  X  e.  U )  /\  ( a  e.  (
Base `  (Scalar `  S
) )  /\  b  e.  ( Base `  R
) ) )  ->  F  e.  ( S LMHom  T ) )
21 simprl 794 . . . . . . 7  |-  ( ( ( F  e.  ( S LMHom  T )  /\  X  e.  U )  /\  ( a  e.  (
Base `  (Scalar `  S
) )  /\  b  e.  ( Base `  R
) ) )  -> 
a  e.  ( Base `  (Scalar `  S )
) )
22 eqid 2622 . . . . . . . . . . 11  |-  ( Base `  S )  =  (
Base `  S )
2322, 3lssss 18937 . . . . . . . . . 10  |-  ( X  e.  U  ->  X  C_  ( Base `  S
) )
2423adantl 482 . . . . . . . . 9  |-  ( ( F  e.  ( S LMHom 
T )  /\  X  e.  U )  ->  X  C_  ( Base `  S
) )
2524adantr 481 . . . . . . . 8  |-  ( ( ( F  e.  ( S LMHom  T )  /\  X  e.  U )  /\  ( a  e.  (
Base `  (Scalar `  S
) )  /\  b  e.  ( Base `  R
) ) )  ->  X  C_  ( Base `  S
) )
262, 22ressbas2 15931 . . . . . . . . . . . 12  |-  ( X 
C_  ( Base `  S
)  ->  X  =  ( Base `  R )
)
2724, 26syl 17 . . . . . . . . . . 11  |-  ( ( F  e.  ( S LMHom 
T )  /\  X  e.  U )  ->  X  =  ( Base `  R
) )
2827eleq2d 2687 . . . . . . . . . 10  |-  ( ( F  e.  ( S LMHom 
T )  /\  X  e.  U )  ->  (
b  e.  X  <->  b  e.  ( Base `  R )
) )
2928biimpar 502 . . . . . . . . 9  |-  ( ( ( F  e.  ( S LMHom  T )  /\  X  e.  U )  /\  b  e.  ( Base `  R ) )  ->  b  e.  X
)
3029adantrl 752 . . . . . . . 8  |-  ( ( ( F  e.  ( S LMHom  T )  /\  X  e.  U )  /\  ( a  e.  (
Base `  (Scalar `  S
) )  /\  b  e.  ( Base `  R
) ) )  -> 
b  e.  X )
3125, 30sseldd 3604 . . . . . . 7  |-  ( ( ( F  e.  ( S LMHom  T )  /\  X  e.  U )  /\  ( a  e.  (
Base `  (Scalar `  S
) )  /\  b  e.  ( Base `  R
) ) )  -> 
b  e.  ( Base `  S ) )
32 eqid 2622 . . . . . . . 8  |-  ( Base `  (Scalar `  S )
)  =  ( Base `  (Scalar `  S )
)
33 eqid 2622 . . . . . . . 8  |-  ( .s
`  S )  =  ( .s `  S
)
34 eqid 2622 . . . . . . . 8  |-  ( .s
`  T )  =  ( .s `  T
)
3515, 32, 22, 33, 34lmhmlin 19035 . . . . . . 7  |-  ( ( F  e.  ( S LMHom 
T )  /\  a  e.  ( Base `  (Scalar `  S ) )  /\  b  e.  ( Base `  S ) )  -> 
( F `  (
a ( .s `  S ) b ) )  =  ( a ( .s `  T
) ( F `  b ) ) )
3620, 21, 31, 35syl3anc 1326 . . . . . 6  |-  ( ( ( F  e.  ( S LMHom  T )  /\  X  e.  U )  /\  ( a  e.  (
Base `  (Scalar `  S
) )  /\  b  e.  ( Base `  R
) ) )  -> 
( F `  (
a ( .s `  S ) b ) )  =  ( a ( .s `  T
) ( F `  b ) ) )
371adantr 481 . . . . . . . . 9  |-  ( ( F  e.  ( S LMHom 
T )  /\  X  e.  U )  ->  S  e.  LMod )
3837adantr 481 . . . . . . . 8  |-  ( ( ( F  e.  ( S LMHom  T )  /\  X  e.  U )  /\  ( a  e.  (
Base `  (Scalar `  S
) )  /\  b  e.  ( Base `  R
) ) )  ->  S  e.  LMod )
39 simplr 792 . . . . . . . 8  |-  ( ( ( F  e.  ( S LMHom  T )  /\  X  e.  U )  /\  ( a  e.  (
Base `  (Scalar `  S
) )  /\  b  e.  ( Base `  R
) ) )  ->  X  e.  U )
4015, 33, 32, 3lssvscl 18955 . . . . . . . 8  |-  ( ( ( S  e.  LMod  /\  X  e.  U )  /\  ( a  e.  ( Base `  (Scalar `  S ) )  /\  b  e.  X )
)  ->  ( a
( .s `  S
) b )  e.  X )
4138, 39, 21, 30, 40syl22anc 1327 . . . . . . 7  |-  ( ( ( F  e.  ( S LMHom  T )  /\  X  e.  U )  /\  ( a  e.  (
Base `  (Scalar `  S
) )  /\  b  e.  ( Base `  R
) ) )  -> 
( a ( .s
`  S ) b )  e.  X )
42 fvres 6207 . . . . . . 7  |-  ( ( a ( .s `  S ) b )  e.  X  ->  (
( F  |`  X ) `
 ( a ( .s `  S ) b ) )  =  ( F `  (
a ( .s `  S ) b ) ) )
4341, 42syl 17 . . . . . 6  |-  ( ( ( F  e.  ( S LMHom  T )  /\  X  e.  U )  /\  ( a  e.  (
Base `  (Scalar `  S
) )  /\  b  e.  ( Base `  R
) ) )  -> 
( ( F  |`  X ) `  (
a ( .s `  S ) b ) )  =  ( F `
 ( a ( .s `  S ) b ) ) )
44 fvres 6207 . . . . . . . 8  |-  ( b  e.  X  ->  (
( F  |`  X ) `
 b )  =  ( F `  b
) )
4544oveq2d 6666 . . . . . . 7  |-  ( b  e.  X  ->  (
a ( .s `  T ) ( ( F  |`  X ) `  b ) )  =  ( a ( .s
`  T ) ( F `  b ) ) )
4630, 45syl 17 . . . . . 6  |-  ( ( ( F  e.  ( S LMHom  T )  /\  X  e.  U )  /\  ( a  e.  (
Base `  (Scalar `  S
) )  /\  b  e.  ( Base `  R
) ) )  -> 
( a ( .s
`  T ) ( ( F  |`  X ) `
 b ) )  =  ( a ( .s `  T ) ( F `  b
) ) )
4736, 43, 463eqtr4d 2666 . . . . 5  |-  ( ( ( F  e.  ( S LMHom  T )  /\  X  e.  U )  /\  ( a  e.  (
Base `  (Scalar `  S
) )  /\  b  e.  ( Base `  R
) ) )  -> 
( ( F  |`  X ) `  (
a ( .s `  S ) b ) )  =  ( a ( .s `  T
) ( ( F  |`  X ) `  b
) ) )
4847ralrimivva 2971 . . . 4  |-  ( ( F  e.  ( S LMHom 
T )  /\  X  e.  U )  ->  A. a  e.  ( Base `  (Scalar `  S ) ) A. b  e.  ( Base `  R ) ( ( F  |`  X ) `  ( a ( .s
`  S ) b ) )  =  ( a ( .s `  T ) ( ( F  |`  X ) `  b ) ) )
4918adantl 482 . . . . . 6  |-  ( ( F  e.  ( S LMHom 
T )  /\  X  e.  U )  ->  (Scalar `  S )  =  (Scalar `  R ) )
5049fveq2d 6195 . . . . 5  |-  ( ( F  e.  ( S LMHom 
T )  /\  X  e.  U )  ->  ( Base `  (Scalar `  S
) )  =  (
Base `  (Scalar `  R
) ) )
512, 33ressvsca 16032 . . . . . . . . . 10  |-  ( X  e.  U  ->  ( .s `  S )  =  ( .s `  R
) )
5251adantl 482 . . . . . . . . 9  |-  ( ( F  e.  ( S LMHom 
T )  /\  X  e.  U )  ->  ( .s `  S )  =  ( .s `  R
) )
5352oveqd 6667 . . . . . . . 8  |-  ( ( F  e.  ( S LMHom 
T )  /\  X  e.  U )  ->  (
a ( .s `  S ) b )  =  ( a ( .s `  R ) b ) )
5453fveq2d 6195 . . . . . . 7  |-  ( ( F  e.  ( S LMHom 
T )  /\  X  e.  U )  ->  (
( F  |`  X ) `
 ( a ( .s `  S ) b ) )  =  ( ( F  |`  X ) `  (
a ( .s `  R ) b ) ) )
5554eqeq1d 2624 . . . . . 6  |-  ( ( F  e.  ( S LMHom 
T )  /\  X  e.  U )  ->  (
( ( F  |`  X ) `  (
a ( .s `  S ) b ) )  =  ( a ( .s `  T
) ( ( F  |`  X ) `  b
) )  <->  ( ( F  |`  X ) `  ( a ( .s
`  R ) b ) )  =  ( a ( .s `  T ) ( ( F  |`  X ) `  b ) ) ) )
5655ralbidv 2986 . . . . 5  |-  ( ( F  e.  ( S LMHom 
T )  /\  X  e.  U )  ->  ( A. b  e.  ( Base `  R ) ( ( F  |`  X ) `
 ( a ( .s `  S ) b ) )  =  ( a ( .s
`  T ) ( ( F  |`  X ) `
 b ) )  <->  A. b  e.  ( Base `  R ) ( ( F  |`  X ) `
 ( a ( .s `  R ) b ) )  =  ( a ( .s
`  T ) ( ( F  |`  X ) `
 b ) ) ) )
5750, 56raleqbidv 3152 . . . 4  |-  ( ( F  e.  ( S LMHom 
T )  /\  X  e.  U )  ->  ( A. a  e.  ( Base `  (Scalar `  S
) ) A. b  e.  ( Base `  R
) ( ( F  |`  X ) `  (
a ( .s `  S ) b ) )  =  ( a ( .s `  T
) ( ( F  |`  X ) `  b
) )  <->  A. a  e.  ( Base `  (Scalar `  R ) ) A. b  e.  ( Base `  R ) ( ( F  |`  X ) `  ( a ( .s
`  R ) b ) )  =  ( a ( .s `  T ) ( ( F  |`  X ) `  b ) ) ) )
5848, 57mpbid 222 . . 3  |-  ( ( F  e.  ( S LMHom 
T )  /\  X  e.  U )  ->  A. a  e.  ( Base `  (Scalar `  R ) ) A. b  e.  ( Base `  R ) ( ( F  |`  X ) `  ( a ( .s
`  R ) b ) )  =  ( a ( .s `  T ) ( ( F  |`  X ) `  b ) ) )
5914, 19, 583jca 1242 . 2  |-  ( ( F  e.  ( S LMHom 
T )  /\  X  e.  U )  ->  (
( F  |`  X )  e.  ( R  GrpHom  T )  /\  (Scalar `  T )  =  (Scalar `  R )  /\  A. a  e.  ( Base `  (Scalar `  R )
) A. b  e.  ( Base `  R
) ( ( F  |`  X ) `  (
a ( .s `  R ) b ) )  =  ( a ( .s `  T
) ( ( F  |`  X ) `  b
) ) ) )
60 eqid 2622 . . 3  |-  (Scalar `  R )  =  (Scalar `  R )
61 eqid 2622 . . 3  |-  ( Base `  (Scalar `  R )
)  =  ( Base `  (Scalar `  R )
)
62 eqid 2622 . . 3  |-  ( Base `  R )  =  (
Base `  R )
63 eqid 2622 . . 3  |-  ( .s
`  R )  =  ( .s `  R
)
6460, 16, 61, 62, 63, 34islmhm 19027 . 2  |-  ( ( F  |`  X )  e.  ( R LMHom  T )  <-> 
( ( R  e. 
LMod  /\  T  e.  LMod )  /\  ( ( F  |`  X )  e.  ( R  GrpHom  T )  /\  (Scalar `  T )  =  (Scalar `  R )  /\  A. a  e.  (
Base `  (Scalar `  R
) ) A. b  e.  ( Base `  R
) ( ( F  |`  X ) `  (
a ( .s `  R ) b ) )  =  ( a ( .s `  T
) ( ( F  |`  X ) `  b
) ) ) ) )
658, 59, 64sylanbrc 698 1  |-  ( ( F  e.  ( S LMHom 
T )  /\  X  e.  U )  ->  ( F  |`  X )  e.  ( R LMHom  T ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912    C_ wss 3574    |` cres 5116   ` cfv 5888  (class class class)co 6650   Basecbs 15857   ↾s cress 15858  Scalarcsca 15944   .scvsca 15945  SubGrpcsubg 17588    GrpHom cghm 17657   LModclmod 18863   LSubSpclss 18932   LMHom clmhm 19019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-sca 15957  df-vsca 15958  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-ghm 17658  df-mgp 18490  df-ur 18502  df-ring 18549  df-lmod 18865  df-lss 18933  df-lmhm 19022
This theorem is referenced by:  frlmsplit2  20112  lmhmlnmsplit  37657  pwssplit4  37659
  Copyright terms: Public domain W3C validator