MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmhmpropd Structured version   Visualization version   Unicode version

Theorem lmhmpropd 19073
Description: Module homomorphism depends only on the module attributes of structures. (Contributed by Mario Carneiro, 8-Oct-2015.)
Hypotheses
Ref Expression
lmhmpropd.a  |-  ( ph  ->  B  =  ( Base `  J ) )
lmhmpropd.b  |-  ( ph  ->  C  =  ( Base `  K ) )
lmhmpropd.c  |-  ( ph  ->  B  =  ( Base `  L ) )
lmhmpropd.d  |-  ( ph  ->  C  =  ( Base `  M ) )
lmhmpropd.1  |-  ( ph  ->  F  =  (Scalar `  J ) )
lmhmpropd.2  |-  ( ph  ->  G  =  (Scalar `  K ) )
lmhmpropd.3  |-  ( ph  ->  F  =  (Scalar `  L ) )
lmhmpropd.4  |-  ( ph  ->  G  =  (Scalar `  M ) )
lmhmpropd.p  |-  P  =  ( Base `  F
)
lmhmpropd.q  |-  Q  =  ( Base `  G
)
lmhmpropd.e  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  J ) y )  =  ( x ( +g  `  L ) y ) )
lmhmpropd.f  |-  ( (
ph  /\  ( x  e.  C  /\  y  e.  C ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  M ) y ) )
lmhmpropd.g  |-  ( (
ph  /\  ( x  e.  P  /\  y  e.  B ) )  -> 
( x ( .s
`  J ) y )  =  ( x ( .s `  L
) y ) )
lmhmpropd.h  |-  ( (
ph  /\  ( x  e.  Q  /\  y  e.  C ) )  -> 
( x ( .s
`  K ) y )  =  ( x ( .s `  M
) y ) )
Assertion
Ref Expression
lmhmpropd  |-  ( ph  ->  ( J LMHom  K )  =  ( L LMHom  M
) )
Distinct variable groups:    x, y, C    x, J, y    x, K, y    x, L, y   
x, M, y    x, P, y    ph, x, y   
x, B, y    x, Q, y
Allowed substitution hints:    F( x, y)    G( x, y)

Proof of Theorem lmhmpropd
Dummy variables  z  w  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmhmpropd.a . . . . . 6  |-  ( ph  ->  B  =  ( Base `  J ) )
2 lmhmpropd.c . . . . . 6  |-  ( ph  ->  B  =  ( Base `  L ) )
3 lmhmpropd.e . . . . . 6  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  J ) y )  =  ( x ( +g  `  L ) y ) )
4 lmhmpropd.1 . . . . . 6  |-  ( ph  ->  F  =  (Scalar `  J ) )
5 lmhmpropd.3 . . . . . 6  |-  ( ph  ->  F  =  (Scalar `  L ) )
6 lmhmpropd.p . . . . . 6  |-  P  =  ( Base `  F
)
7 lmhmpropd.g . . . . . 6  |-  ( (
ph  /\  ( x  e.  P  /\  y  e.  B ) )  -> 
( x ( .s
`  J ) y )  =  ( x ( .s `  L
) y ) )
81, 2, 3, 4, 5, 6, 7lmodpropd 18926 . . . . 5  |-  ( ph  ->  ( J  e.  LMod  <->  L  e.  LMod ) )
9 lmhmpropd.b . . . . . 6  |-  ( ph  ->  C  =  ( Base `  K ) )
10 lmhmpropd.d . . . . . 6  |-  ( ph  ->  C  =  ( Base `  M ) )
11 lmhmpropd.f . . . . . 6  |-  ( (
ph  /\  ( x  e.  C  /\  y  e.  C ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  M ) y ) )
12 lmhmpropd.2 . . . . . 6  |-  ( ph  ->  G  =  (Scalar `  K ) )
13 lmhmpropd.4 . . . . . 6  |-  ( ph  ->  G  =  (Scalar `  M ) )
14 lmhmpropd.q . . . . . 6  |-  Q  =  ( Base `  G
)
15 lmhmpropd.h . . . . . 6  |-  ( (
ph  /\  ( x  e.  Q  /\  y  e.  C ) )  -> 
( x ( .s
`  K ) y )  =  ( x ( .s `  M
) y ) )
169, 10, 11, 12, 13, 14, 15lmodpropd 18926 . . . . 5  |-  ( ph  ->  ( K  e.  LMod  <->  M  e.  LMod ) )
178, 16anbi12d 747 . . . 4  |-  ( ph  ->  ( ( J  e. 
LMod  /\  K  e.  LMod ) 
<->  ( L  e.  LMod  /\  M  e.  LMod )
) )
187oveqrspc2v 6673 . . . . . . . . . . 11  |-  ( (
ph  /\  ( z  e.  P  /\  w  e.  B ) )  -> 
( z ( .s
`  J ) w )  =  ( z ( .s `  L
) w ) )
1918adantlr 751 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
f  e.  ( J 
GrpHom  K )  /\  G  =  F ) )  /\  ( z  e.  P  /\  w  e.  B
) )  ->  (
z ( .s `  J ) w )  =  ( z ( .s `  L ) w ) )
2019fveq2d 6195 . . . . . . . . 9  |-  ( ( ( ph  /\  (
f  e.  ( J 
GrpHom  K )  /\  G  =  F ) )  /\  ( z  e.  P  /\  w  e.  B
) )  ->  (
f `  ( z
( .s `  J
) w ) )  =  ( f `  ( z ( .s
`  L ) w ) ) )
21 simpll 790 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
f  e.  ( J 
GrpHom  K )  /\  G  =  F ) )  /\  ( z  e.  P  /\  w  e.  B
) )  ->  ph )
22 simprl 794 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f  e.  ( J 
GrpHom  K )  /\  G  =  F ) )  /\  ( z  e.  P  /\  w  e.  B
) )  ->  z  e.  P )
23 simplrr 801 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
f  e.  ( J 
GrpHom  K )  /\  G  =  F ) )  /\  ( z  e.  P  /\  w  e.  B
) )  ->  G  =  F )
2423fveq2d 6195 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
f  e.  ( J 
GrpHom  K )  /\  G  =  F ) )  /\  ( z  e.  P  /\  w  e.  B
) )  ->  ( Base `  G )  =  ( Base `  F
) )
2524, 14, 63eqtr4g 2681 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f  e.  ( J 
GrpHom  K )  /\  G  =  F ) )  /\  ( z  e.  P  /\  w  e.  B
) )  ->  Q  =  P )
2622, 25eleqtrrd 2704 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
f  e.  ( J 
GrpHom  K )  /\  G  =  F ) )  /\  ( z  e.  P  /\  w  e.  B
) )  ->  z  e.  Q )
27 simplrl 800 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
f  e.  ( J 
GrpHom  K )  /\  G  =  F ) )  /\  ( z  e.  P  /\  w  e.  B
) )  ->  f  e.  ( J  GrpHom  K ) )
28 eqid 2622 . . . . . . . . . . . . . 14  |-  ( Base `  J )  =  (
Base `  J )
29 eqid 2622 . . . . . . . . . . . . . 14  |-  ( Base `  K )  =  (
Base `  K )
3028, 29ghmf 17664 . . . . . . . . . . . . 13  |-  ( f  e.  ( J  GrpHom  K )  ->  f :
( Base `  J ) --> ( Base `  K )
)
3127, 30syl 17 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
f  e.  ( J 
GrpHom  K )  /\  G  =  F ) )  /\  ( z  e.  P  /\  w  e.  B
) )  ->  f : ( Base `  J
) --> ( Base `  K
) )
32 simprr 796 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
f  e.  ( J 
GrpHom  K )  /\  G  =  F ) )  /\  ( z  e.  P  /\  w  e.  B
) )  ->  w  e.  B )
3321, 1syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
f  e.  ( J 
GrpHom  K )  /\  G  =  F ) )  /\  ( z  e.  P  /\  w  e.  B
) )  ->  B  =  ( Base `  J
) )
3432, 33eleqtrd 2703 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
f  e.  ( J 
GrpHom  K )  /\  G  =  F ) )  /\  ( z  e.  P  /\  w  e.  B
) )  ->  w  e.  ( Base `  J
) )
3531, 34ffvelrnd 6360 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f  e.  ( J 
GrpHom  K )  /\  G  =  F ) )  /\  ( z  e.  P  /\  w  e.  B
) )  ->  (
f `  w )  e.  ( Base `  K
) )
3621, 9syl 17 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f  e.  ( J 
GrpHom  K )  /\  G  =  F ) )  /\  ( z  e.  P  /\  w  e.  B
) )  ->  C  =  ( Base `  K
) )
3735, 36eleqtrrd 2704 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
f  e.  ( J 
GrpHom  K )  /\  G  =  F ) )  /\  ( z  e.  P  /\  w  e.  B
) )  ->  (
f `  w )  e.  C )
3815oveqrspc2v 6673 . . . . . . . . . 10  |-  ( (
ph  /\  ( z  e.  Q  /\  (
f `  w )  e.  C ) )  -> 
( z ( .s
`  K ) ( f `  w ) )  =  ( z ( .s `  M
) ( f `  w ) ) )
3921, 26, 37, 38syl12anc 1324 . . . . . . . . 9  |-  ( ( ( ph  /\  (
f  e.  ( J 
GrpHom  K )  /\  G  =  F ) )  /\  ( z  e.  P  /\  w  e.  B
) )  ->  (
z ( .s `  K ) ( f `
 w ) )  =  ( z ( .s `  M ) ( f `  w
) ) )
4020, 39eqeq12d 2637 . . . . . . . 8  |-  ( ( ( ph  /\  (
f  e.  ( J 
GrpHom  K )  /\  G  =  F ) )  /\  ( z  e.  P  /\  w  e.  B
) )  ->  (
( f `  (
z ( .s `  J ) w ) )  =  ( z ( .s `  K
) ( f `  w ) )  <->  ( f `  ( z ( .s
`  L ) w ) )  =  ( z ( .s `  M ) ( f `
 w ) ) ) )
41402ralbidva 2988 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  ( J  GrpHom  K )  /\  G  =  F ) )  ->  ( A. z  e.  P  A. w  e.  B  ( f `  (
z ( .s `  J ) w ) )  =  ( z ( .s `  K
) ( f `  w ) )  <->  A. z  e.  P  A. w  e.  B  ( f `  ( z ( .s
`  L ) w ) )  =  ( z ( .s `  M ) ( f `
 w ) ) ) )
4241pm5.32da 673 . . . . . 6  |-  ( ph  ->  ( ( ( f  e.  ( J  GrpHom  K )  /\  G  =  F )  /\  A. z  e.  P  A. w  e.  B  (
f `  ( z
( .s `  J
) w ) )  =  ( z ( .s `  K ) ( f `  w
) ) )  <->  ( (
f  e.  ( J 
GrpHom  K )  /\  G  =  F )  /\  A. z  e.  P  A. w  e.  B  (
f `  ( z
( .s `  L
) w ) )  =  ( z ( .s `  M ) ( f `  w
) ) ) ) )
43 df-3an 1039 . . . . . 6  |-  ( ( f  e.  ( J 
GrpHom  K )  /\  G  =  F  /\  A. z  e.  P  A. w  e.  B  ( f `  ( z ( .s
`  J ) w ) )  =  ( z ( .s `  K ) ( f `
 w ) ) )  <->  ( ( f  e.  ( J  GrpHom  K )  /\  G  =  F )  /\  A. z  e.  P  A. w  e.  B  (
f `  ( z
( .s `  J
) w ) )  =  ( z ( .s `  K ) ( f `  w
) ) ) )
44 df-3an 1039 . . . . . 6  |-  ( ( f  e.  ( J 
GrpHom  K )  /\  G  =  F  /\  A. z  e.  P  A. w  e.  B  ( f `  ( z ( .s
`  L ) w ) )  =  ( z ( .s `  M ) ( f `
 w ) ) )  <->  ( ( f  e.  ( J  GrpHom  K )  /\  G  =  F )  /\  A. z  e.  P  A. w  e.  B  (
f `  ( z
( .s `  L
) w ) )  =  ( z ( .s `  M ) ( f `  w
) ) ) )
4542, 43, 443bitr4g 303 . . . . 5  |-  ( ph  ->  ( ( f  e.  ( J  GrpHom  K )  /\  G  =  F  /\  A. z  e.  P  A. w  e.  B  ( f `  ( z ( .s
`  J ) w ) )  =  ( z ( .s `  K ) ( f `
 w ) ) )  <->  ( f  e.  ( J  GrpHom  K )  /\  G  =  F  /\  A. z  e.  P  A. w  e.  B  ( f `  ( z ( .s
`  L ) w ) )  =  ( z ( .s `  M ) ( f `
 w ) ) ) ) )
4612, 4eqeq12d 2637 . . . . . 6  |-  ( ph  ->  ( G  =  F  <-> 
(Scalar `  K )  =  (Scalar `  J )
) )
474fveq2d 6195 . . . . . . . 8  |-  ( ph  ->  ( Base `  F
)  =  ( Base `  (Scalar `  J )
) )
486, 47syl5eq 2668 . . . . . . 7  |-  ( ph  ->  P  =  ( Base `  (Scalar `  J )
) )
491raleqdv 3144 . . . . . . 7  |-  ( ph  ->  ( A. w  e.  B  ( f `  ( z ( .s
`  J ) w ) )  =  ( z ( .s `  K ) ( f `
 w ) )  <->  A. w  e.  ( Base `  J ) ( f `  ( z ( .s `  J
) w ) )  =  ( z ( .s `  K ) ( f `  w
) ) ) )
5048, 49raleqbidv 3152 . . . . . 6  |-  ( ph  ->  ( A. z  e.  P  A. w  e.  B  ( f `  ( z ( .s
`  J ) w ) )  =  ( z ( .s `  K ) ( f `
 w ) )  <->  A. z  e.  ( Base `  (Scalar `  J
) ) A. w  e.  ( Base `  J
) ( f `  ( z ( .s
`  J ) w ) )  =  ( z ( .s `  K ) ( f `
 w ) ) ) )
5146, 503anbi23d 1402 . . . . 5  |-  ( ph  ->  ( ( f  e.  ( J  GrpHom  K )  /\  G  =  F  /\  A. z  e.  P  A. w  e.  B  ( f `  ( z ( .s
`  J ) w ) )  =  ( z ( .s `  K ) ( f `
 w ) ) )  <->  ( f  e.  ( J  GrpHom  K )  /\  (Scalar `  K
)  =  (Scalar `  J )  /\  A. z  e.  ( Base `  (Scalar `  J )
) A. w  e.  ( Base `  J
) ( f `  ( z ( .s
`  J ) w ) )  =  ( z ( .s `  K ) ( f `
 w ) ) ) ) )
521, 9, 2, 10, 3, 11ghmpropd 17698 . . . . . . 7  |-  ( ph  ->  ( J  GrpHom  K )  =  ( L  GrpHom  M ) )
5352eleq2d 2687 . . . . . 6  |-  ( ph  ->  ( f  e.  ( J  GrpHom  K )  <->  f  e.  ( L  GrpHom  M ) ) )
5413, 5eqeq12d 2637 . . . . . 6  |-  ( ph  ->  ( G  =  F  <-> 
(Scalar `  M )  =  (Scalar `  L )
) )
555fveq2d 6195 . . . . . . . 8  |-  ( ph  ->  ( Base `  F
)  =  ( Base `  (Scalar `  L )
) )
566, 55syl5eq 2668 . . . . . . 7  |-  ( ph  ->  P  =  ( Base `  (Scalar `  L )
) )
572raleqdv 3144 . . . . . . 7  |-  ( ph  ->  ( A. w  e.  B  ( f `  ( z ( .s
`  L ) w ) )  =  ( z ( .s `  M ) ( f `
 w ) )  <->  A. w  e.  ( Base `  L ) ( f `  ( z ( .s `  L
) w ) )  =  ( z ( .s `  M ) ( f `  w
) ) ) )
5856, 57raleqbidv 3152 . . . . . 6  |-  ( ph  ->  ( A. z  e.  P  A. w  e.  B  ( f `  ( z ( .s
`  L ) w ) )  =  ( z ( .s `  M ) ( f `
 w ) )  <->  A. z  e.  ( Base `  (Scalar `  L
) ) A. w  e.  ( Base `  L
) ( f `  ( z ( .s
`  L ) w ) )  =  ( z ( .s `  M ) ( f `
 w ) ) ) )
5953, 54, 583anbi123d 1399 . . . . 5  |-  ( ph  ->  ( ( f  e.  ( J  GrpHom  K )  /\  G  =  F  /\  A. z  e.  P  A. w  e.  B  ( f `  ( z ( .s
`  L ) w ) )  =  ( z ( .s `  M ) ( f `
 w ) ) )  <->  ( f  e.  ( L  GrpHom  M )  /\  (Scalar `  M
)  =  (Scalar `  L )  /\  A. z  e.  ( Base `  (Scalar `  L )
) A. w  e.  ( Base `  L
) ( f `  ( z ( .s
`  L ) w ) )  =  ( z ( .s `  M ) ( f `
 w ) ) ) ) )
6045, 51, 593bitr3d 298 . . . 4  |-  ( ph  ->  ( ( f  e.  ( J  GrpHom  K )  /\  (Scalar `  K
)  =  (Scalar `  J )  /\  A. z  e.  ( Base `  (Scalar `  J )
) A. w  e.  ( Base `  J
) ( f `  ( z ( .s
`  J ) w ) )  =  ( z ( .s `  K ) ( f `
 w ) ) )  <->  ( f  e.  ( L  GrpHom  M )  /\  (Scalar `  M
)  =  (Scalar `  L )  /\  A. z  e.  ( Base `  (Scalar `  L )
) A. w  e.  ( Base `  L
) ( f `  ( z ( .s
`  L ) w ) )  =  ( z ( .s `  M ) ( f `
 w ) ) ) ) )
6117, 60anbi12d 747 . . 3  |-  ( ph  ->  ( ( ( J  e.  LMod  /\  K  e. 
LMod )  /\  (
f  e.  ( J 
GrpHom  K )  /\  (Scalar `  K )  =  (Scalar `  J )  /\  A. z  e.  ( Base `  (Scalar `  J )
) A. w  e.  ( Base `  J
) ( f `  ( z ( .s
`  J ) w ) )  =  ( z ( .s `  K ) ( f `
 w ) ) ) )  <->  ( ( L  e.  LMod  /\  M  e.  LMod )  /\  (
f  e.  ( L 
GrpHom  M )  /\  (Scalar `  M )  =  (Scalar `  L )  /\  A. z  e.  ( Base `  (Scalar `  L )
) A. w  e.  ( Base `  L
) ( f `  ( z ( .s
`  L ) w ) )  =  ( z ( .s `  M ) ( f `
 w ) ) ) ) ) )
62 eqid 2622 . . . 4  |-  (Scalar `  J )  =  (Scalar `  J )
63 eqid 2622 . . . 4  |-  (Scalar `  K )  =  (Scalar `  K )
64 eqid 2622 . . . 4  |-  ( Base `  (Scalar `  J )
)  =  ( Base `  (Scalar `  J )
)
65 eqid 2622 . . . 4  |-  ( .s
`  J )  =  ( .s `  J
)
66 eqid 2622 . . . 4  |-  ( .s
`  K )  =  ( .s `  K
)
6762, 63, 64, 28, 65, 66islmhm 19027 . . 3  |-  ( f  e.  ( J LMHom  K
)  <->  ( ( J  e.  LMod  /\  K  e. 
LMod )  /\  (
f  e.  ( J 
GrpHom  K )  /\  (Scalar `  K )  =  (Scalar `  J )  /\  A. z  e.  ( Base `  (Scalar `  J )
) A. w  e.  ( Base `  J
) ( f `  ( z ( .s
`  J ) w ) )  =  ( z ( .s `  K ) ( f `
 w ) ) ) ) )
68 eqid 2622 . . . 4  |-  (Scalar `  L )  =  (Scalar `  L )
69 eqid 2622 . . . 4  |-  (Scalar `  M )  =  (Scalar `  M )
70 eqid 2622 . . . 4  |-  ( Base `  (Scalar `  L )
)  =  ( Base `  (Scalar `  L )
)
71 eqid 2622 . . . 4  |-  ( Base `  L )  =  (
Base `  L )
72 eqid 2622 . . . 4  |-  ( .s
`  L )  =  ( .s `  L
)
73 eqid 2622 . . . 4  |-  ( .s
`  M )  =  ( .s `  M
)
7468, 69, 70, 71, 72, 73islmhm 19027 . . 3  |-  ( f  e.  ( L LMHom  M
)  <->  ( ( L  e.  LMod  /\  M  e. 
LMod )  /\  (
f  e.  ( L 
GrpHom  M )  /\  (Scalar `  M )  =  (Scalar `  L )  /\  A. z  e.  ( Base `  (Scalar `  L )
) A. w  e.  ( Base `  L
) ( f `  ( z ( .s
`  L ) w ) )  =  ( z ( .s `  M ) ( f `
 w ) ) ) ) )
7561, 67, 743bitr4g 303 . 2  |-  ( ph  ->  ( f  e.  ( J LMHom  K )  <->  f  e.  ( L LMHom  M ) ) )
7675eqrdv 2620 1  |-  ( ph  ->  ( J LMHom  K )  =  ( L LMHom  M
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   -->wf 5884   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941  Scalarcsca 15944   .scvsca 15945    GrpHom cghm 17657   LModclmod 18863   LMHom clmhm 19019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-grp 17425  df-ghm 17658  df-mgp 18490  df-ur 18502  df-ring 18549  df-lmod 18865  df-lmhm 19022
This theorem is referenced by:  phlpropd  20000
  Copyright terms: Public domain W3C validator