MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismbf Structured version   Visualization version   Unicode version

Theorem ismbf 23397
Description: The predicate " F is a measurable function". A function is measurable iff the preimages of all open intervals are measurable sets in the sense of ismbl 23294. (Contributed by Mario Carneiro, 17-Jun-2014.)
Assertion
Ref Expression
ismbf  |-  ( F : A --> RR  ->  ( F  e. MblFn  <->  A. x  e.  ran  (,) ( `' F "
x )  e.  dom  vol ) )
Distinct variable groups:    x, F    x, A

Proof of Theorem ismbf
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 mbfdm 23395 . . 3  |-  ( F  e. MblFn  ->  dom  F  e.  dom  vol )
2 fdm 6051 . . . 4  |-  ( F : A --> RR  ->  dom 
F  =  A )
32eleq1d 2686 . . 3  |-  ( F : A --> RR  ->  ( dom  F  e.  dom  vol  <->  A  e.  dom  vol )
)
41, 3syl5ib 234 . 2  |-  ( F : A --> RR  ->  ( F  e. MblFn  ->  A  e. 
dom  vol ) )
5 ioomax 12248 . . . . 5  |-  ( -oo (,) +oo )  =  RR
6 ioorebas 12275 . . . . 5  |-  ( -oo (,) +oo )  e.  ran  (,)
75, 6eqeltrri 2698 . . . 4  |-  RR  e.  ran  (,)
8 imaeq2 5462 . . . . . 6  |-  ( x  =  RR  ->  ( `' F " x )  =  ( `' F " RR ) )
98eleq1d 2686 . . . . 5  |-  ( x  =  RR  ->  (
( `' F "
x )  e.  dom  vol  <->  ( `' F " RR )  e.  dom  vol )
)
109rspcv 3305 . . . 4  |-  ( RR  e.  ran  (,)  ->  ( A. x  e.  ran  (,) ( `' F "
x )  e.  dom  vol 
->  ( `' F " RR )  e.  dom  vol ) )
117, 10ax-mp 5 . . 3  |-  ( A. x  e.  ran  (,) ( `' F " x )  e.  dom  vol  ->  ( `' F " RR )  e.  dom  vol )
12 fimacnv 6347 . . . 4  |-  ( F : A --> RR  ->  ( `' F " RR )  =  A )
1312eleq1d 2686 . . 3  |-  ( F : A --> RR  ->  ( ( `' F " RR )  e.  dom  vol  <->  A  e.  dom  vol )
)
1411, 13syl5ib 234 . 2  |-  ( F : A --> RR  ->  ( A. x  e.  ran  (,) ( `' F "
x )  e.  dom  vol 
->  A  e.  dom  vol ) )
15 ffvelrn 6357 . . . . . . . . . . . . . 14  |-  ( ( F : A --> RR  /\  x  e.  A )  ->  ( F `  x
)  e.  RR )
1615adantlr 751 . . . . . . . . . . . . 13  |-  ( ( ( F : A --> RR  /\  A  e.  dom  vol )  /\  x  e.  A )  ->  ( F `  x )  e.  RR )
1716rered 13964 . . . . . . . . . . . 12  |-  ( ( ( F : A --> RR  /\  A  e.  dom  vol )  /\  x  e.  A )  ->  (
Re `  ( F `  x ) )  =  ( F `  x
) )
1817mpteq2dva 4744 . . . . . . . . . . 11  |-  ( ( F : A --> RR  /\  A  e.  dom  vol )  ->  ( x  e.  A  |->  ( Re `  ( F `  x )
) )  =  ( x  e.  A  |->  ( F `  x ) ) )
1916recnd 10068 . . . . . . . . . . . 12  |-  ( ( ( F : A --> RR  /\  A  e.  dom  vol )  /\  x  e.  A )  ->  ( F `  x )  e.  CC )
20 simpl 473 . . . . . . . . . . . . 13  |-  ( ( F : A --> RR  /\  A  e.  dom  vol )  ->  F : A --> RR )
2120feqmptd 6249 . . . . . . . . . . . 12  |-  ( ( F : A --> RR  /\  A  e.  dom  vol )  ->  F  =  ( x  e.  A  |->  ( F `
 x ) ) )
22 ref 13852 . . . . . . . . . . . . . 14  |-  Re : CC
--> RR
2322a1i 11 . . . . . . . . . . . . 13  |-  ( ( F : A --> RR  /\  A  e.  dom  vol )  ->  Re : CC --> RR )
2423feqmptd 6249 . . . . . . . . . . . 12  |-  ( ( F : A --> RR  /\  A  e.  dom  vol )  ->  Re  =  ( y  e.  CC  |->  ( Re
`  y ) ) )
25 fveq2 6191 . . . . . . . . . . . 12  |-  ( y  =  ( F `  x )  ->  (
Re `  y )  =  ( Re `  ( F `  x ) ) )
2619, 21, 24, 25fmptco 6396 . . . . . . . . . . 11  |-  ( ( F : A --> RR  /\  A  e.  dom  vol )  ->  ( Re  o.  F
)  =  ( x  e.  A  |->  ( Re
`  ( F `  x ) ) ) )
2718, 26, 213eqtr4rd 2667 . . . . . . . . . 10  |-  ( ( F : A --> RR  /\  A  e.  dom  vol )  ->  F  =  ( Re  o.  F ) )
2827cnveqd 5298 . . . . . . . . 9  |-  ( ( F : A --> RR  /\  A  e.  dom  vol )  ->  `' F  =  `' ( Re  o.  F
) )
2928imaeq1d 5465 . . . . . . . 8  |-  ( ( F : A --> RR  /\  A  e.  dom  vol )  ->  ( `' F "
x )  =  ( `' ( Re  o.  F ) " x
) )
3029eleq1d 2686 . . . . . . 7  |-  ( ( F : A --> RR  /\  A  e.  dom  vol )  ->  ( ( `' F " x )  e.  dom  vol  <->  ( `' ( Re  o.  F ) " x
)  e.  dom  vol ) )
31 imf 13853 . . . . . . . . . . . . . . . 16  |-  Im : CC
--> RR
3231a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( F : A --> RR  /\  A  e.  dom  vol )  ->  Im : CC --> RR )
3332feqmptd 6249 . . . . . . . . . . . . . 14  |-  ( ( F : A --> RR  /\  A  e.  dom  vol )  ->  Im  =  ( y  e.  CC  |->  ( Im
`  y ) ) )
34 fveq2 6191 . . . . . . . . . . . . . 14  |-  ( y  =  ( F `  x )  ->  (
Im `  y )  =  ( Im `  ( F `  x ) ) )
3519, 21, 33, 34fmptco 6396 . . . . . . . . . . . . 13  |-  ( ( F : A --> RR  /\  A  e.  dom  vol )  ->  ( Im  o.  F
)  =  ( x  e.  A  |->  ( Im
`  ( F `  x ) ) ) )
3616reim0d 13965 . . . . . . . . . . . . . 14  |-  ( ( ( F : A --> RR  /\  A  e.  dom  vol )  /\  x  e.  A )  ->  (
Im `  ( F `  x ) )  =  0 )
3736mpteq2dva 4744 . . . . . . . . . . . . 13  |-  ( ( F : A --> RR  /\  A  e.  dom  vol )  ->  ( x  e.  A  |->  ( Im `  ( F `  x )
) )  =  ( x  e.  A  |->  0 ) )
3835, 37eqtrd 2656 . . . . . . . . . . . 12  |-  ( ( F : A --> RR  /\  A  e.  dom  vol )  ->  ( Im  o.  F
)  =  ( x  e.  A  |->  0 ) )
39 fconstmpt 5163 . . . . . . . . . . . 12  |-  ( A  X.  { 0 } )  =  ( x  e.  A  |->  0 )
4038, 39syl6eqr 2674 . . . . . . . . . . 11  |-  ( ( F : A --> RR  /\  A  e.  dom  vol )  ->  ( Im  o.  F
)  =  ( A  X.  { 0 } ) )
4140cnveqd 5298 . . . . . . . . . 10  |-  ( ( F : A --> RR  /\  A  e.  dom  vol )  ->  `' ( Im  o.  F )  =  `' ( A  X.  { 0 } ) )
4241imaeq1d 5465 . . . . . . . . 9  |-  ( ( F : A --> RR  /\  A  e.  dom  vol )  ->  ( `' ( Im  o.  F ) "
x )  =  ( `' ( A  X.  { 0 } )
" x ) )
43 simpr 477 . . . . . . . . . 10  |-  ( ( F : A --> RR  /\  A  e.  dom  vol )  ->  A  e.  dom  vol )
44 0re 10040 . . . . . . . . . 10  |-  0  e.  RR
45 mbfconstlem 23396 . . . . . . . . . 10  |-  ( ( A  e.  dom  vol  /\  0  e.  RR )  ->  ( `' ( A  X.  { 0 } ) " x
)  e.  dom  vol )
4643, 44, 45sylancl 694 . . . . . . . . 9  |-  ( ( F : A --> RR  /\  A  e.  dom  vol )  ->  ( `' ( A  X.  { 0 } ) " x )  e.  dom  vol )
4742, 46eqeltrd 2701 . . . . . . . 8  |-  ( ( F : A --> RR  /\  A  e.  dom  vol )  ->  ( `' ( Im  o.  F ) "
x )  e.  dom  vol )
4847biantrud 528 . . . . . . 7  |-  ( ( F : A --> RR  /\  A  e.  dom  vol )  ->  ( ( `' ( Re  o.  F )
" x )  e. 
dom  vol  <->  ( ( `' ( Re  o.  F
) " x )  e.  dom  vol  /\  ( `' ( Im  o.  F ) " x
)  e.  dom  vol ) ) )
4930, 48bitrd 268 . . . . . 6  |-  ( ( F : A --> RR  /\  A  e.  dom  vol )  ->  ( ( `' F " x )  e.  dom  vol  <->  ( ( `' ( Re  o.  F ) "
x )  e.  dom  vol 
/\  ( `' ( Im  o.  F )
" x )  e. 
dom  vol ) ) )
5049ralbidv 2986 . . . . 5  |-  ( ( F : A --> RR  /\  A  e.  dom  vol )  ->  ( A. x  e. 
ran  (,) ( `' F " x )  e.  dom  vol  <->  A. x  e.  ran  (,) ( ( `' ( Re  o.  F )
" x )  e. 
dom  vol  /\  ( `' ( Im  o.  F
) " x )  e.  dom  vol )
) )
51 ax-resscn 9993 . . . . . . . 8  |-  RR  C_  CC
52 fss 6056 . . . . . . . 8  |-  ( ( F : A --> RR  /\  RR  C_  CC )  ->  F : A --> CC )
5351, 52mpan2 707 . . . . . . 7  |-  ( F : A --> RR  ->  F : A --> CC )
54 mblss 23299 . . . . . . 7  |-  ( A  e.  dom  vol  ->  A 
C_  RR )
55 cnex 10017 . . . . . . . 8  |-  CC  e.  _V
56 reex 10027 . . . . . . . 8  |-  RR  e.  _V
57 elpm2r 7875 . . . . . . . 8  |-  ( ( ( CC  e.  _V  /\  RR  e.  _V )  /\  ( F : A --> CC  /\  A  C_  RR ) )  ->  F  e.  ( CC  ^pm  RR ) )
5855, 56, 57mpanl12 718 . . . . . . 7  |-  ( ( F : A --> CC  /\  A  C_  RR )  ->  F  e.  ( CC  ^pm 
RR ) )
5953, 54, 58syl2an 494 . . . . . 6  |-  ( ( F : A --> RR  /\  A  e.  dom  vol )  ->  F  e.  ( CC 
^pm  RR ) )
6059biantrurd 529 . . . . 5  |-  ( ( F : A --> RR  /\  A  e.  dom  vol )  ->  ( A. x  e. 
ran  (,) ( ( `' ( Re  o.  F
) " x )  e.  dom  vol  /\  ( `' ( Im  o.  F ) " x
)  e.  dom  vol ) 
<->  ( F  e.  ( CC  ^pm  RR )  /\  A. x  e.  ran  (,) ( ( `' ( Re  o.  F )
" x )  e. 
dom  vol  /\  ( `' ( Im  o.  F
) " x )  e.  dom  vol )
) ) )
6150, 60bitrd 268 . . . 4  |-  ( ( F : A --> RR  /\  A  e.  dom  vol )  ->  ( A. x  e. 
ran  (,) ( `' F " x )  e.  dom  vol  <->  ( F  e.  ( CC 
^pm  RR )  /\  A. x  e.  ran  (,) (
( `' ( Re  o.  F ) "
x )  e.  dom  vol 
/\  ( `' ( Im  o.  F )
" x )  e. 
dom  vol ) ) ) )
62 ismbf1 23393 . . . 4  |-  ( F  e. MblFn 
<->  ( F  e.  ( CC  ^pm  RR )  /\  A. x  e.  ran  (,) ( ( `' ( Re  o.  F )
" x )  e. 
dom  vol  /\  ( `' ( Im  o.  F
) " x )  e.  dom  vol )
) )
6361, 62syl6rbbr 279 . . 3  |-  ( ( F : A --> RR  /\  A  e.  dom  vol )  ->  ( F  e. MblFn  <->  A. x  e.  ran  (,) ( `' F " x )  e.  dom  vol )
)
6463ex 450 . 2  |-  ( F : A --> RR  ->  ( A  e.  dom  vol  ->  ( F  e. MblFn  <->  A. x  e.  ran  (,) ( `' F " x )  e.  dom  vol )
) )
654, 14, 64pm5.21ndd 369 1  |-  ( F : A --> RR  ->  ( F  e. MblFn  <->  A. x  e.  ran  (,) ( `' F "
x )  e.  dom  vol ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200    C_ wss 3574   {csn 4177    |-> cmpt 4729    X. cxp 5112   `'ccnv 5113   dom cdm 5114   ran crn 5115   "cima 5117    o. ccom 5118   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^pm cpm 7858   CCcc 9934   RRcr 9935   0cc0 9936   +oocpnf 10071   -oocmnf 10072   (,)cioo 12175   Recre 13837   Imcim 13838   volcvol 23232  MblFncmbf 23383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xadd 11947  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-xmet 19739  df-met 19740  df-ovol 23233  df-vol 23234  df-mbf 23388
This theorem is referenced by:  ismbfcn  23398  mbfima  23399  mbfid  23403  ismbfd  23407  mbfeqalem  23409  mbfres2  23412  mbfimaopnlem  23422  i1fd  23448  elmbfmvol2  30329  cnambfre  33458  mbf0  40173
  Copyright terms: Public domain W3C validator