MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrisval Structured version   Visualization version   Unicode version

Theorem mrisval 16290
Description: Value of the set of independent sets of a Moore system. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
mrisval.1  |-  N  =  (mrCls `  A )
mrisval.2  |-  I  =  (mrInd `  A )
Assertion
Ref Expression
mrisval  |-  ( A  e.  (Moore `  X
)  ->  I  =  { s  e.  ~P X  |  A. x  e.  s  -.  x  e.  ( N `  (
s  \  { x } ) ) } )
Distinct variable groups:    A, s, x    X, s
Allowed substitution hints:    I( x, s)    N( x, s)    X( x)

Proof of Theorem mrisval
Dummy variable  c is distinct from all other variables.
StepHypRef Expression
1 mrisval.2 . . 3  |-  I  =  (mrInd `  A )
2 fvssunirn 6217 . . . . 5  |-  (Moore `  X )  C_  U. ran Moore
32sseli 3599 . . . 4  |-  ( A  e.  (Moore `  X
)  ->  A  e.  U.
ran Moore )
4 unieq 4444 . . . . . . 7  |-  ( c  =  A  ->  U. c  =  U. A )
54pweqd 4163 . . . . . 6  |-  ( c  =  A  ->  ~P U. c  =  ~P U. A )
6 fveq2 6191 . . . . . . . . . . 11  |-  ( c  =  A  ->  (mrCls `  c )  =  (mrCls `  A ) )
7 mrisval.1 . . . . . . . . . . 11  |-  N  =  (mrCls `  A )
86, 7syl6eqr 2674 . . . . . . . . . 10  |-  ( c  =  A  ->  (mrCls `  c )  =  N )
98fveq1d 6193 . . . . . . . . 9  |-  ( c  =  A  ->  (
(mrCls `  c ) `  ( s  \  {
x } ) )  =  ( N `  ( s  \  {
x } ) ) )
109eleq2d 2687 . . . . . . . 8  |-  ( c  =  A  ->  (
x  e.  ( (mrCls `  c ) `  (
s  \  { x } ) )  <->  x  e.  ( N `  ( s 
\  { x }
) ) ) )
1110notbid 308 . . . . . . 7  |-  ( c  =  A  ->  ( -.  x  e.  (
(mrCls `  c ) `  ( s  \  {
x } ) )  <->  -.  x  e.  ( N `  ( s  \  { x } ) ) ) )
1211ralbidv 2986 . . . . . 6  |-  ( c  =  A  ->  ( A. x  e.  s  -.  x  e.  (
(mrCls `  c ) `  ( s  \  {
x } ) )  <->  A. x  e.  s  -.  x  e.  ( N `  ( s  \  { x } ) ) ) )
135, 12rabeqbidv 3195 . . . . 5  |-  ( c  =  A  ->  { s  e.  ~P U. c  |  A. x  e.  s  -.  x  e.  ( (mrCls `  c ) `  ( s  \  {
x } ) ) }  =  { s  e.  ~P U. A  |  A. x  e.  s  -.  x  e.  ( N `  ( s 
\  { x }
) ) } )
14 df-mri 16248 . . . . 5  |- mrInd  =  ( c  e.  U. ran Moore  |->  { s  e.  ~P U. c  |  A. x  e.  s  -.  x  e.  ( (mrCls `  c
) `  ( s  \  { x } ) ) } )
15 vuniex 6954 . . . . . . 7  |-  U. c  e.  _V
1615pwex 4848 . . . . . 6  |-  ~P U. c  e.  _V
1716rabex 4813 . . . . 5  |-  { s  e.  ~P U. c  |  A. x  e.  s  -.  x  e.  ( (mrCls `  c ) `  ( s  \  {
x } ) ) }  e.  _V
1813, 14, 17fvmpt3i 6287 . . . 4  |-  ( A  e.  U. ran Moore  ->  (mrInd `  A )  =  {
s  e.  ~P U. A  |  A. x  e.  s  -.  x  e.  ( N `  (
s  \  { x } ) ) } )
193, 18syl 17 . . 3  |-  ( A  e.  (Moore `  X
)  ->  (mrInd `  A
)  =  { s  e.  ~P U. A  |  A. x  e.  s  -.  x  e.  ( N `  ( s 
\  { x }
) ) } )
201, 19syl5eq 2668 . 2  |-  ( A  e.  (Moore `  X
)  ->  I  =  { s  e.  ~P U. A  |  A. x  e.  s  -.  x  e.  ( N `  (
s  \  { x } ) ) } )
21 mreuni 16260 . . . 4  |-  ( A  e.  (Moore `  X
)  ->  U. A  =  X )
2221pweqd 4163 . . 3  |-  ( A  e.  (Moore `  X
)  ->  ~P U. A  =  ~P X )
2322rabeqdv 3194 . 2  |-  ( A  e.  (Moore `  X
)  ->  { s  e.  ~P U. A  |  A. x  e.  s  -.  x  e.  ( N `  ( s  \  { x } ) ) }  =  {
s  e.  ~P X  |  A. x  e.  s  -.  x  e.  ( N `  ( s 
\  { x }
) ) } )
2420, 23eqtrd 2656 1  |-  ( A  e.  (Moore `  X
)  ->  I  =  { s  e.  ~P X  |  A. x  e.  s  -.  x  e.  ( N `  (
s  \  { x } ) ) } )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916    \ cdif 3571   ~Pcpw 4158   {csn 4177   U.cuni 4436   ran crn 5115   ` cfv 5888  Moorecmre 16242  mrClscmrc 16243  mrIndcmri 16244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fv 5896  df-mre 16246  df-mri 16248
This theorem is referenced by:  ismri  16291
  Copyright terms: Public domain W3C validator