| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mrisval | Structured version Visualization version Unicode version | ||
| Description: Value of the set of independent sets of a Moore system. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| mrisval.1 |
|
| mrisval.2 |
|
| Ref | Expression |
|---|---|
| mrisval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mrisval.2 |
. . 3
| |
| 2 | fvssunirn 6217 |
. . . . 5
| |
| 3 | 2 | sseli 3599 |
. . . 4
|
| 4 | unieq 4444 |
. . . . . . 7
| |
| 5 | 4 | pweqd 4163 |
. . . . . 6
|
| 6 | fveq2 6191 |
. . . . . . . . . . 11
| |
| 7 | mrisval.1 |
. . . . . . . . . . 11
| |
| 8 | 6, 7 | syl6eqr 2674 |
. . . . . . . . . 10
|
| 9 | 8 | fveq1d 6193 |
. . . . . . . . 9
|
| 10 | 9 | eleq2d 2687 |
. . . . . . . 8
|
| 11 | 10 | notbid 308 |
. . . . . . 7
|
| 12 | 11 | ralbidv 2986 |
. . . . . 6
|
| 13 | 5, 12 | rabeqbidv 3195 |
. . . . 5
|
| 14 | df-mri 16248 |
. . . . 5
| |
| 15 | vuniex 6954 |
. . . . . . 7
| |
| 16 | 15 | pwex 4848 |
. . . . . 6
|
| 17 | 16 | rabex 4813 |
. . . . 5
|
| 18 | 13, 14, 17 | fvmpt3i 6287 |
. . . 4
|
| 19 | 3, 18 | syl 17 |
. . 3
|
| 20 | 1, 19 | syl5eq 2668 |
. 2
|
| 21 | mreuni 16260 |
. . . 4
| |
| 22 | 21 | pweqd 4163 |
. . 3
|
| 23 | 22 | rabeqdv 3194 |
. 2
|
| 24 | 20, 23 | eqtrd 2656 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-iota 5851 df-fun 5890 df-fv 5896 df-mre 16246 df-mri 16248 |
| This theorem is referenced by: ismri 16291 |
| Copyright terms: Public domain | W3C validator |