| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isnrm3 | Structured version Visualization version Unicode version | ||
| Description: A topological space is normal iff any two disjoint closed sets are separated by open sets. (Contributed by Mario Carneiro, 24-Aug-2015.) |
| Ref | Expression |
|---|---|
| isnrm3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nrmtop 21140 |
. . 3
| |
| 2 | nrmsep 21161 |
. . . . . 6
| |
| 3 | 2 | 3exp2 1285 |
. . . . 5
|
| 4 | 3 | impd 447 |
. . . 4
|
| 5 | 4 | ralrimivv 2970 |
. . 3
|
| 6 | 1, 5 | jca 554 |
. 2
|
| 7 | simpl 473 |
. . 3
| |
| 8 | simpr1 1067 |
. . . . . . . . . . 11
| |
| 9 | simpr2 1068 |
. . . . . . . . . . . . 13
| |
| 10 | sslin 3839 |
. . . . . . . . . . . . 13
| |
| 11 | 9, 10 | syl 17 |
. . . . . . . . . . . 12
|
| 12 | simplll 798 |
. . . . . . . . . . . . . 14
| |
| 13 | simplr 792 |
. . . . . . . . . . . . . 14
| |
| 14 | eqid 2622 |
. . . . . . . . . . . . . . 15
| |
| 15 | 14 | opncld 20837 |
. . . . . . . . . . . . . 14
|
| 16 | 12, 13, 15 | syl2anc 693 |
. . . . . . . . . . . . 13
|
| 17 | simpr3 1069 |
. . . . . . . . . . . . . 14
| |
| 18 | simpllr 799 |
. . . . . . . . . . . . . . 15
| |
| 19 | elssuni 4467 |
. . . . . . . . . . . . . . 15
| |
| 20 | reldisj 4020 |
. . . . . . . . . . . . . . 15
| |
| 21 | 18, 19, 20 | 3syl 18 |
. . . . . . . . . . . . . 14
|
| 22 | 17, 21 | mpbid 222 |
. . . . . . . . . . . . 13
|
| 23 | 14 | clsss2 20876 |
. . . . . . . . . . . . . 14
|
| 24 | ssdifin0 4050 |
. . . . . . . . . . . . . 14
| |
| 25 | 23, 24 | syl 17 |
. . . . . . . . . . . . 13
|
| 26 | 16, 22, 25 | syl2anc 693 |
. . . . . . . . . . . 12
|
| 27 | sseq0 3975 |
. . . . . . . . . . . 12
| |
| 28 | 11, 26, 27 | syl2anc 693 |
. . . . . . . . . . 11
|
| 29 | 8, 28 | jca 554 |
. . . . . . . . . 10
|
| 30 | 29 | ex 450 |
. . . . . . . . 9
|
| 31 | 30 | rexlimdva 3031 |
. . . . . . . 8
|
| 32 | 31 | reximdva 3017 |
. . . . . . 7
|
| 33 | 32 | imim2d 57 |
. . . . . 6
|
| 34 | 33 | ralimdv 2963 |
. . . . 5
|
| 35 | 34 | ralimdv 2963 |
. . . 4
|
| 36 | 35 | imp 445 |
. . 3
|
| 37 | isnrm2 21162 |
. . 3
| |
| 38 | 7, 36, 37 | sylanbrc 698 |
. 2
|
| 39 | 6, 38 | impbii 199 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-top 20699 df-cld 20823 df-cls 20825 df-nrm 21121 |
| This theorem is referenced by: metnrm 22665 |
| Copyright terms: Public domain | W3C validator |