| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isocnv3 | Structured version Visualization version Unicode version | ||
| Description: Complementation law for isomorphism. (Contributed by Mario Carneiro, 9-Sep-2015.) |
| Ref | Expression |
|---|---|
| isocnv3.1 |
|
| isocnv3.2 |
|
| Ref | Expression |
|---|---|
| isocnv3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brxp 5147 |
. . . . . . . 8
| |
| 2 | isocnv3.1 |
. . . . . . . . . . 11
| |
| 3 | 2 | breqi 4659 |
. . . . . . . . . 10
|
| 4 | brdif 4705 |
. . . . . . . . . 10
| |
| 5 | 3, 4 | bitri 264 |
. . . . . . . . 9
|
| 6 | 5 | baib 944 |
. . . . . . . 8
|
| 7 | 1, 6 | sylbir 225 |
. . . . . . 7
|
| 8 | 7 | adantl 482 |
. . . . . 6
|
| 9 | f1of 6137 |
. . . . . . . 8
| |
| 10 | ffvelrn 6357 |
. . . . . . . . . 10
| |
| 11 | ffvelrn 6357 |
. . . . . . . . . 10
| |
| 12 | 10, 11 | anim12dan 882 |
. . . . . . . . 9
|
| 13 | brxp 5147 |
. . . . . . . . 9
| |
| 14 | 12, 13 | sylibr 224 |
. . . . . . . 8
|
| 15 | 9, 14 | sylan 488 |
. . . . . . 7
|
| 16 | isocnv3.2 |
. . . . . . . . . 10
| |
| 17 | 16 | breqi 4659 |
. . . . . . . . 9
|
| 18 | brdif 4705 |
. . . . . . . . 9
| |
| 19 | 17, 18 | bitri 264 |
. . . . . . . 8
|
| 20 | 19 | baib 944 |
. . . . . . 7
|
| 21 | 15, 20 | syl 17 |
. . . . . 6
|
| 22 | 8, 21 | bibi12d 335 |
. . . . 5
|
| 23 | notbi 309 |
. . . . 5
| |
| 24 | 22, 23 | syl6rbbr 279 |
. . . 4
|
| 25 | 24 | 2ralbidva 2988 |
. . 3
|
| 26 | 25 | pm5.32i 669 |
. 2
|
| 27 | df-isom 5897 |
. 2
| |
| 28 | df-isom 5897 |
. 2
| |
| 29 | 26, 27, 28 | 3bitr4i 292 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-f1o 5895 df-fv 5896 df-isom 5897 |
| This theorem is referenced by: leiso 13243 gtiso 29478 |
| Copyright terms: Public domain | W3C validator |